Advertisement

Discovering User Location Semantics Using Mobile Notification Handling Behaviour

  • Andreas KomninosEmail author
  • Ioulia Simou
  • Elton Frengkou
  • John Garofalakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11912)

Abstract

We analyse data from a longitudinal study of 44 participants, including notification handling, device state and location information. We demonstrate that it is possible to semantically label a user’s location based on their notification handling behaviour, even when location coordinates are obfuscated so as not to precisely match known venue locations. Privacy-preserving semantic labelling of a user’s location can be useful for the contextually-relevant handling of interruptions and service delivery on mobile devices.

Keywords

Interruption management Mobile notifications Semantic location labelling 

References

  1. 1.
    Akosa, J.S.: Predictive accuracy: a misleading performance measure for highly imbalanced data. In: SAS Global Forum 2017, Orlando, FL, USA, April 2017 Google Scholar
  2. 2.
    Anderson, C., Hübener, I., Seipp, A.K., Ohly, S., David, K., Pejovic, V.: A survey of attention management systems in ubiquitous computing environments 2(2), 58:1–58:27.  https://doi.org/10.1145/3214261CrossRefGoogle Scholar
  3. 3.
    Auda, J., Weber, D., Voit, A., Schneegass, S.: Understanding user preferences towards rule-based notification deferral. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI EA 2018, pp. LBW584:1–LBW584:6. ACM.  https://doi.org/10.1145/3170427.3188688
  4. 4.
    Celik, S.C., Incel, O.D.: Semantic place prediction from crowd-sensed mobile phone data 9(6), 2109–2124.  https://doi.org/10.1007/s12652-017-0549-6CrossRefGoogle Scholar
  5. 5.
    Falcone, D., Mascolo, C., Comito, C., Talia, D., Crowcroft, J.: What is this place? Inferring place categories through user patterns identification in geo-tagged tweets. In: 6th International Conference on Mobile Computing, Applications and Services, pp. 10–19.  https://doi.org/10.4108/icst.mobicase.2014.257683
  6. 6.
    Gu, Y., Yao, Y., Liu, W., Song, J.: We know where you are: home location identification in location-based social networks. In: 2016 25th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9.  https://doi.org/10.1109/ICCCN.2016.7568598
  7. 7.
    He, T., Yin, H., Chen, Z., Zhou, X., Sadiq, S., Luo, B.: A spatial-temporal topic model for the semantic annotation of POIs in LBSNs 8(1), 12:1–12:24.  https://doi.org/10.1145/2905373CrossRefGoogle Scholar
  8. 8.
    Komninos, Andreas, Frengkou, Elton, Garofalakis, John: Predicting user responsiveness to smartphone notifications for edge computing. In: Kameas, Achilles, Stathis, Kostas (eds.) AmI 2018. LNCS, vol. 11249, pp. 3–19. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03062-9_1CrossRefGoogle Scholar
  9. 9.
    Krumm, J., Rouhana, D.: Placer: semantic place labels from diary data. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2013, pp. 163–172. ACM (2013).  https://doi.org/10.1145/2493432.2493504
  10. 10.
    Leppäkoski, H., et al.: Semantic labeling of user location context based on phone usage features. https://www.hindawi.com/journals/misy/2017/3876906/,  https://doi.org/10.1155/2017/3876906CrossRefGoogle Scholar
  11. 11.
    Saikia, P., She, J.: Effective mobile notification recommendation using social nature of locations. In: 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 1265–1270 (2017).  https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.203
  12. 12.
    Visuri, A., van Berkel, N., Okoshi, T., Goncalves, J., Kostakos, V.: Understanding smartphone notifications’ user interactions and content importance 128, 72–85.  https://doi.org/10.1016/j.ijhcs.2019.03.001CrossRefGoogle Scholar
  13. 13.
    Wu, X., Chen, L., Lv, M., Han, M., Chen, G.: Cost-sensitive semi-supervised personalized semantic place label recognition using multi-context data 1(3), 116:1–116:14.  https://doi.org/10.1145/3131903Google Scholar
  14. 14.
    Zandbergen, P.A.: Accuracy of iPhone locations: a comparison of assisted GPS, WiFi and cellular positioning 13(s1), 5–25.  https://doi.org/10.1111/j.1467-9671.2009.01152.xCrossRefGoogle Scholar
  15. 15.
    Zhu, Y., Zhong, E., Lu, Z., Yang, Q.: Feature engineering for semantic place prediction 9(6), 772–783.  https://doi.org/10.1016/j.pmcj.2013.07.004CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of PatrasRioGreece
  2. 2.Computer Technology Institute and Press “Diophantos”RioGreece

Personalised recommendations