Advertisement

Structure and Width of the d\(^*\)(2380) Dibaryon

  • Avraham GalEmail author
Chapter
  • 23 Downloads
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

In this contribution, dedicated to the memory of Walter Greiner, we discuss the structure and width of the recently established d\(^*\)(2380) dibaryon, confronting the consequences of our Pion Assisted Dibaryons hadronic model with those of quark motivated calculations. In particular, the relatively small width \(\varGamma _{d^*}\approx 70\) MeV favors hadronic structure for the d\(^*\)(2380) dibaryon rather than a six-quark structure.

Notes

Acknowledgements

I’m indebted to the organizers of the Frontiers of Science symposium in memory of Walter Greiner, held at FIAS, Frankfurt, June 2017, particularly to Horst Stöcker, for inviting me to participate in this special event and for supporting my trip. Special thanks are due to Humberto Garcilazo, together with whom the concept of pion assisted dibaryons was conceived, and also due to Heinz Clement for many stimulating exchanges on the physics of dibaryons and Jerry Miller for instructive discussions on 6q contributions to dibaryons.

References

  1. 1.
    E. Friedman, G. Soff, J. Phys. G 11, L37 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    H. Toki, T. Yamazaki, Phys. Lett. B 213, 129 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    T. Yamazaki, R.S. Hayano, K. Itahashi et al., Z. Phys. A 355, 219 (1996)ADSGoogle Scholar
  4. 4.
    T. Yamazaki, S. Hirenzaki, R.S. Hayano, H. Toki, Phys. Rep. 514, 1 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    E.E. Kolomeitsev, N. Kaiser, W. Weise, Phys. Rev. Lett. 90, 092501 (2003). References to earlier work by W. Weise listed thereinGoogle Scholar
  6. 6.
    E. Friedman, A. Gal, Nucl. Phys. A 928, 128 (2014). References to earlier work listed thereinGoogle Scholar
  7. 7.
    E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stöcker, Phys. Rev. Lett. 71, 1328 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    J. Schaffner, C.B. Dover, A. Gal, C. Greiner, D.J. Millener, H. Stöcker, Ann. Phys. 235, 35 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    J. Schaffner-Bielich, A. Gal, Phys. Rev. C 62, 034311 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    J. Schaffner, A. Gal, I.N. Mishustin, H. Stöcker, W. Greiner, Phys. Lett. B 334, 268 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    A. Gal, Acta Phys. Pol. B 47, 471 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    F.J. Dyson, N.-H. Xuong, Phys. Rev. Lett. 13, 815 (1964)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Clement, Prog. Part. Nucl. Phys. 93, 195 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    W. Park, A. Park, S.H. Lee, Phys. Rev. D 92, 014037 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    A. Gal, H. Garcilazo, Phys. Rev. Lett. 111, 172301 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Gal, H. Garcilazo, Nucl. Phys. A 928, 73 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Arndt, J.S. Hyslop III, L.D. Roper, Phys. Rev. D 35, 128 (1987). References to earlier work listed thereinGoogle Scholar
  19. 19.
    N. Hoshizaki, Phys. Rev. C 45, R1424 (1992); Prog. Theor. Phys. 89, 563 (1993). References to earlier work listed thereinGoogle Scholar
  20. 20.
    T. Ueda, Phys. Lett. B 119, 281 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Rev. Lett. 121, 052001 (2018); 99, 025201 (2019)Google Scholar
  22. 22.
    P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Rev. Lett. 106, 242302 (2011)Google Scholar
  23. 23.
    P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Lett. B 721, 229 (2013)Google Scholar
  24. 24.
    P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Lett. B 743, 325 (2015)Google Scholar
  25. 25.
    P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Rev. C 88, 055208 (2013)Google Scholar
  26. 26.
    G. Agakishiev et al., Phys. Lett. B 750, 184 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    P. Adlarson et al. (WASA-at-COSY Collaboration, SAID Data Analysis Center), Phys. Rev. C 90, 035204 (2014); Phys. Rev. Lett. 112, 202301 (2014)Google Scholar
  28. 28.
    P.J. Mulders, A.T. Aerts, J.J. de Swart, Phys. Rev. D 21, 2653 (1980)ADSCrossRefGoogle Scholar
  29. 29.
    M. Oka, K. Yazaki, Phys. Lett. B 90, 41 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    M. Cvetič, B. Golli, N. Mankoč-Borštnik, M. Rosina, Phys. Lett. B 93, 489 (1980)ADSCrossRefGoogle Scholar
  31. 31.
    P.J. Mulders, A.W. Thomas, J. Phys. G: Nucl. Part. Phys. 9, 1159 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    T. Goldman, K. Maltman, G.J. Stephenson Jr., K.E. Schmidt, F. Wang, Phys. Rev. C 39, 1889 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    X.Q. Zhang, Z.Y. Zhang, Y.W. Yu, P.N. Shen, Phys. Rev. C 60, 045203 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    R.D. Mota, A. Valcarce, F. Fernandez, D.R. Entem, H. Garcilazo, Phys. Rev. C 65, 034006 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    H. Clement et al. (CELSIUS-WASA Collaboration), Prog. Part. Nucl. Phys. 61, 276 (2008)Google Scholar
  36. 36.
    H. Huang, J. Ping, F. Wang, Phys. Rev. C 89, 034001 (2014). References to earlier work listed thereinGoogle Scholar
  37. 37.
    Y. Dong, F. Huang, P. Shen, Z. Zhang, Phys. Rev. C 94, 014003 (2016). References to earlier work listed thereinGoogle Scholar
  38. 38.
    P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Lett. B 762, 455 (2016)Google Scholar
  39. 39.
    F. Wang, J. Ping, H. Huang, arXiv:1711.01445v1. See also Y. Dong, P. Shen, Z. Zhang, Int. J. Mod. Phys. A 34 (18), 1950100 (2019)
  40. 40.
    R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 76, 025209 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 15 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    M. Bashkanov, H. Clement, T. Skorodko, Nucl. Phys. A 958, 129 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    A. Gal, Phys. Lett. B 769, 436 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    F. Huang, Z.Y. Zhang, P.N. Shen, W.L. Wang, Chinese Phys. C 39, 071001 (2015), arXiv:1408.0458v3 (nucl-th)
  45. 45.
    T. Ishikawa et al. (ELPH Experiment), Phys. Lett. B 772, 398 (2017)Google Scholar
  46. 46.
    A. Abashian, N.E. Booth, K.M. Crowe, Phys. Rev. Lett. 5, 258 (1960); Substantiated by N.E. Booth, A. Abashian, K.M. Crowe, Phys. Rev. Lett. 7, 35 (1961)Google Scholar
  47. 47.
    M.N. Platonova, V.I. Kukulin, Nucl. Phys. A 946, 117 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    M. Bashkanov, H. Clement, T. Skorodko, Eur. Phys. J. A 51, 87 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    P. Adlarson et al. (WASA-at-COSY Collaboration), Phys. Lett. B 774, 559 (2017)Google Scholar
  50. 50.
    Y. Dong, F. Huang, P. Shen, Z. Zhang, Phys. Lett. B 769, 223 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    G.A. Miller, Phys. Rev. C 89, 045203 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    M. Bashkanov, S.J. Brodsky, H. Clement, Phys. Lett. B 727, 438 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations