Advertisement

Power Flows in Complex Renewable Energy Networks

  • Mirko SchäferEmail author
  • Bo Tranberg
  • Martin Greiner
Chapter
  • 26 Downloads
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

The transition towards a sustainable, clean energy infrastructure is strongly dependent on the efficient integration of the fluctuating renewable power generation from wind and solar. With a focus on power flows, in this contribution we review complex renewable energy networks as a weather-data driven modelling approach to a highly renewable future electricity system. The benefit of cross-border transmission between the European countries in such a scenario is discussed, taking into account the role of spatial coarse-graining for the modelling results. Flow allocation methods are presented as a tool set to analyse the spatio-temporal flow patterns and to allocate both transmission and generation capacity costs.

References

  1. 1.
    European Commission. A policy framework for climate and energy in the period from 2020 to 2030 (2014)Google Scholar
  2. 2.
    H.-M. Henning, A. Palzer, A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies. Part I: methodology. Renew. Sustain. Energy Rev. 30, 1003–1018 (2014)Google Scholar
  3. 3.
    Y. Scholz, Renewable energy based electricity supply at low costs: development of the REMix model and application for Europe. Ph.D. thesis, University of Stuttgart (2012)Google Scholar
  4. 4.
    F.U. Leuthold, H. Weigt, C. von Hirschhausen, A large-scale spatial optimization model of the european electricity market. Netw. Spat. Econ. 12(1), 75–107 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Pfenninger, A. Hawkes, J. Keirstead, Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 33, 74–86 (2014)CrossRefGoogle Scholar
  6. 6.
    T. Brown, J. Hösch, D. Schlachtberger, PyPSA: python for power system analysis (2017), arXiv:1707.09913 [physics]
  7. 7.
    D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, S. Bofinger, Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew. Energy 35(11), 2483–2489 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Heide, M. Greiner, L. von Bremen, C. Hoffmann, Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation. Renew. Energy 36(9), 2515–2523 (2011)CrossRefGoogle Scholar
  9. 9.
    T.V. Jensen, M. Greiner, Emergence of a phase transition for the required amount of storage in highly renewable electricity systems. Eur. Phys. J. Spec. Top. 223(12), 2475–2481 (2014)CrossRefGoogle Scholar
  10. 10.
    R.A. Rodriguez, S. Becker, G.B. Andresen, D. Heide, M. Greiner, Transmission needs across a fully renewable European power system. Renew. Energy 63, 467–476 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Becker, R.A. Rodriguez, G.B. Andresen, S. Schramm, M. Greiner, Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply. Energy 64, 404–418 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Schlachtberger, S. Becker, S. Schramm, M. Greiner, Backup flexibility classes in emerging large-scale renewable electricity systems. Energy Convers. Manag. 125, 336–346 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Raunbak, T. Zeyer, K. Zhu, M. Greiner, Principal mismatch patterns across a simplified highly renewable european electricity network. Energies 10(12) (2017)Google Scholar
  14. 14.
    E.H. Eriksen, L.J. Schwenk-Nebbe, B. Tranberg, T. Brown, M. Greiner, Optimal heterogeneity in a simplified highly renewable European electricity system. Energy 133, 913–928 (2017)CrossRefGoogle Scholar
  15. 15.
    D. Schlachtberger, T. Brown, S. Schramm, M. Greiner, The benefits of cooperation in a highly renewable European electricity network. Energy 134, 469–481 (2017)CrossRefGoogle Scholar
  16. 16.
    G.B. Andresen, A.A. Søndergaard, M. Greiner, Validation of Danish wind time series from a new global renewable energy atlas for energy system analysis. Energy 93, 1074–1088 (2015)CrossRefGoogle Scholar
  17. 17.
    R.A. Rodriguez, M. Dahl, S. Becker, M. Greiner, Localized vs. synchronized exports across a highly renewable pan-European transmission network. Energy, Sustain. Soc. 5, 21 (2015)Google Scholar
  18. 18.
    S. Becker, B.A. Frew, G.B. Andresen, M.Z. Jacobson, S. Schramm, M. Greiner, Renewable build-up pathways for the US: generation costs are not system costs. Energy 81, 437–445 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Becker, B.A. Frew, G.B. Andresen, T. Zeyer, S. Schramm, M. Greiner, M.Z. Jacobson, Features of a fully renewable US electricity system: optimized mixes of wind and solar PV and transmission grid extensions. Energy 72, 443–458 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Dahl, R.A. Rodriguez, A.A. Søndergaard, T. Zeyer, G.B. Andresen, M. Greiner, Infrastructure estimates for a highly renewable global electricity grid, New Horizons in Fundamental Physics, FIAS Interdisciplinary Science Series (Springer, Cham, 2017), pp. 333–356CrossRefGoogle Scholar
  21. 21.
    A.J. Wood, B.F. Wollenberg, P. Generation, Operation, and Control (Wiley, New York, 2012)Google Scholar
  22. 22.
    K. Purchala, L. Meeus, D. Van Dommelen, R. Belmans. Usefulness of DC power flow for active power flow analysis, in IEEE Power Engineering Society General Meeting, vol. 1 (2005), pp. 454–459Google Scholar
  23. 23.
    ACER and CEER. Annual report on the results of monitoring the internal electricity and gas markets in 2016. Technical report (2017)Google Scholar
  24. 24.
    J. Hörsch, T. Brown, The role of spatial scale in joint optimisations of generation and transmission for European highly renewable scenarios, in 14th International Conference on the European Energy Market (EEM), June 2017Google Scholar
  25. 25.
    M. Schäfer, S. Bugge Siggaard, Kun Zhu, C. Risager Poulsen, M. Greiner, Scaling of transmission capacities in coarse-grained renewable electricity networks. EPL (Europhys. Lett.) 119(3), 38004 (2017)Google Scholar
  26. 26.
    T. Brown, Transmission network loading in Europe with high shares of renewables. IET Renew. Power Gener. 9(1), 57–65 (2015)CrossRefGoogle Scholar
  27. 27.
    B. Tranberg, A.B. Thomsen, R.A. Rodriguez, G.B. Andresen, M. Schäfer, M. Greiner, Power flow tracing in a simplified highly renewable European electricity network. New J. Phys. 17(10), 105002 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    M. Schäfer, S. Hempel, J. Hörsch, B. Tranberg, S. Schramm, M. Greiner, Power flow tracing in complex networks, New Horizons in Fundamental Physics, FIAS Interdisciplinary Science Series (Springer, Cham, 2017), pp. 357–373CrossRefGoogle Scholar
  29. 29.
    M. Schäfer, B. Tranberg, S. Hempel, S. Schramm, M. Greiner, Decompositions of injection patterns for nodal flow allocation in renewable electricity networks. Eur. Phys. J. B 90(8), 144 (2017)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A.J. Conejo, J.M. Arroyo, N. Alguacil, A.L. Guijarro, Transmission loss allocation: a comparison of different practical algorithms. IEEE Trans. Power Syst. 17(3), 571–576 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    L.O. Camacho, I.J. Pérez-Arriaga, An assessment of inter-TSO compensation algorithms in the internal electricity market of the european union. Int. J. Electr. Power Energy Syst. 29(10), 699–712 (2007)CrossRefGoogle Scholar
  32. 32.
    J. Bialek, Tracing the flow of electricity. Transm. Distrib. IEE Proc. - Gener. 143(4), 313–320 (1996)CrossRefGoogle Scholar
  33. 33.
    D. Kirschen, R. Allan, G. Strbac, Contributions of individual generators to loads and flows. IEEE Trans. Power Syst. 12(1), 52–60 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    J. Hörsch, M. Schäfer, S. Becker, S. Schramm, M. Greiner, Flow tracing as a tool set for the analysis of networked large-scale renewable electricity systems. Int. J. Electr. Power Energy Syst. 96, 390–397 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Schäfer, L.J. Schwenk-Nebbe, J. Hörsch, B. Tranberg, M. Greiner, Allocation of nodal costs in heterogeneous highly renewable European electricity networks, in 14th International Conference on the European Energy Market (EEM) (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.INATECH, University of FreiburgFreiburgGermany
  2. 2.Ento Labs ApSAarhus CDenmark
  3. 3.Department of EngineeringAarhus UniversityAarhus CDenmark

Personalised recommendations