Advertisement

High-Resolution Experiments with Exotic Nuclei and Mesic Atoms

  • Hans GeisselEmail author
  • Gottfried Münzenberg
  • Christoph Scheidenberger
Chapter
  • 27 Downloads
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

Pioneering heavy-ion research and the limits of stability of atoms and nuclei were central research topics of Walter Greiner. His ideas and directions have inspired and determined the experimental efforts to design novel separators and high-resolution spectrometers to produce and study the most exotic nuclei. This leads directly to the discovery of new nuclides, new decay modes and shapes, and unexspected shell effects near the driplines. Already in his early studies, Walter Greiner investigated mesic atoms which are still of basic interests to understand the strong interaction of matter and the mass modification of bound mesons. The existence of deeply-bound pionic states in heavy atoms was an important question in the Greiner School too. It was answered with a discovery experiment with the fragment separator FRS. In this article, we review characteristic experimental results inspired by the far-reaching ideas of Walter and his colleagues measured with the FRS at GSI. New experimental perspectives with the Super-FRS will also be adressed.

Notes

Acknowledgements

It is a great pleasure to thank T. Dickel, B. Franczak, K. Itahashi, R. Kanungo, W. R. Plaß, M. Pfützner, T. R. Saito, Y. K. Tanaka, I. Tanihata, H. Weick, J. S. Winfield, M. Winkler for fruitful collaboration and discussions of this article.

References

  1. 1.
    N. Angert, C. Schmelzer, Kerntechnik 19(2), 57 (1977)Google Scholar
  2. 2.
    K. Blasche, B. Franczak, in Proceedings of 3rd European Particle Accelerator Conference (Berlin, 1992), p. 9Google Scholar
  3. 3.
    G. Münzenberg, H. Geissel, C. Scheidenberger contribution to this bookGoogle Scholar
  4. 4.
    H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992)CrossRefADSGoogle Scholar
  5. 5.
    H. Geissel, G. Münzenberg, C. Scheidenberger, FIAS Interdisciplinary Science Series ed. by W. Greiner (Springer, Switzerland, 2017)Google Scholar
  6. 6.
    H. Geissel et al., Nucl. Instrum. Methods B 204, 71 (2003)CrossRefADSGoogle Scholar
  7. 7.
    G.D. Westfall et al., Phys. Rev. Lett. 43, 1859 (1979)CrossRefADSGoogle Scholar
  8. 8.
    T.J.M. Symons et al., Phys. Rev. Lett. 42, 40 (1979)CrossRefADSGoogle Scholar
  9. 9.
    I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985); Phys. Lett. B 160, 380 (1985)Google Scholar
  10. 10.
    B. Franzke, Nucl. Instrum. Methods B 24(25), 18 (1987)CrossRefADSGoogle Scholar
  11. 11.
    P. Kienle, Future accelerators and experimental facilities at GSI, report GSI-84-18 (1984). ISSN:0171-4546Google Scholar
  12. 12.
    C. Scheidenberger et al., Phys. Rev. Lett. 73, 50 (1994)CrossRefADSGoogle Scholar
  13. 13.
    C. Scheidenberger et al., Phys. Rev. Lett. 77, 3987 (1996)CrossRefADSGoogle Scholar
  14. 14.
    H. Weick et al., Phys. Rev. Lett. 85, 2725 (2000)CrossRefADSGoogle Scholar
  15. 15.
    T. Schwab, Ph.D. thesis, JLU Gießen, GSI report GSI-91-10 (1991); H. Geissel, C. Scheidenberger, H. Weick, https://web-docs.gsi.de/~weick/atima/
  16. 16.
    C. Scheidenberger et al., Nucl. Instrum. Methods B 142, 441 (1998)CrossRefADSGoogle Scholar
  17. 17.
    T. Schwab, Ph.D. thesis JLU Gießen, GSI report GSI-91-10 (1991); N. Iwasa et al., Nucl. Instrum. Methods B 126, 284 (1997); Nucl. Instrum. Methods B 269, 752 (2011)Google Scholar
  18. 18.
    G. Kraft, Progr. Part. Nucl. Phys. 45, 475 (2000); G. Kraft et al., in Proceeding of the EULIMA Workshop, Nice (1988)Google Scholar
  19. 19.
    W. Enghardt et al., Phys. Med. Biol. 37, 2127 (1992)CrossRefGoogle Scholar
  20. 20.
    W. Enghardt et al., Onkologie 175, (1999)Google Scholar
  21. 21.
    A. Magel et al., Nucl. Instrum. Methods B 94, 548 (1994)CrossRefADSGoogle Scholar
  22. 22.
  23. 23.
    M. Bernas et al., Phys. Lett. B 331, 19 (1994)CrossRefADSGoogle Scholar
  24. 24.
    M. Bernas et al., Nucl. Phys. A 616, 352 (1997)CrossRefADSGoogle Scholar
  25. 25.
    T. Kubo, Nucl. Instrum. Methods Phys. Res. B 204, 97 (2003)Google Scholar
  26. 26.
    M. Hausmann et al., Nucl. Instrum. Methods Phys. Res. B 317, 349 (2013)Google Scholar
  27. 27.
    J. Kurcewicz et al., Phys. Lett. B 717, 371 (2012)CrossRefADSGoogle Scholar
  28. 28.
    T. Kurtukian-Nieto et al., Eur. Phys. J. A 50, 135 (2014)CrossRefADSGoogle Scholar
  29. 29.
    R. Schneider et al., Z. Phys. A 348, 241 (1994)CrossRefADSGoogle Scholar
  30. 30.
    Ch. Engelmann et al., Z. Phys. A 352, 351 (1995)CrossRefADSGoogle Scholar
  31. 31.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)CrossRefADSGoogle Scholar
  32. 32.
    S. Pietri et al., Nucl. Instrum. Methods B 261, 1079 (2007)CrossRefADSGoogle Scholar
  33. 33.
    C.B. Hinke et al., Nature 486, 341 (2012)CrossRefADSGoogle Scholar
  34. 34.
    V.I. Goldansky, Nucl. Phys. 19, 482 (1960)CrossRefGoogle Scholar
  35. 35.
    M. Pfützner et al., Euro. Phys. J. A 14, 279 (2002)CrossRefADSGoogle Scholar
  36. 36.
    J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 (2002)CrossRefADSGoogle Scholar
  37. 37.
    K. Miernik et al., Phys. Rev. C 76, 041304(R) (2007)CrossRefADSGoogle Scholar
  38. 38.
    I. Tanihata, et al., Scientific program of the super-FRS collaboration, GSI-report 2014-4 (2014).  https://doi.org/10.1520/GR-2014-4.
  39. 39.
    J. Äystö et al., Nucl. Instrum. Methods Phys. Res. B 376, 111 (2016)CrossRefADSGoogle Scholar
  40. 40.
    W.R. Plaß et al., Nucl. Instrum. Methods B 317, 457 (2013)CrossRefADSGoogle Scholar
  41. 41.
    T. Dickel et al., Nucl. Instrum. Methods A 777, 247 (1989)Google Scholar
  42. 42.
    T. Dickel et al., Phys. Lett. B 744, 137 (2015)CrossRefADSGoogle Scholar
  43. 43.
    S. Purushothaman et al., Nucl. Instrum. Methods B 266, 4488 (2008)CrossRefADSGoogle Scholar
  44. 44.
    M. Ranjan et al., Europhys. Lett. 96, 52001 (2011)CrossRefADSGoogle Scholar
  45. 45.
    H. Geissel et al., Nucl. Instrum. Methods A 282, 247 (1989)CrossRefADSGoogle Scholar
  46. 46.
    S. Ayet et al., Phys. Rev. C 99, 064313 (2019)Google Scholar
  47. 47.
    F. Greiner, Master thesis, JLU Gießen (2018)Google Scholar
  48. 48.
    G. Huber et al., Phys. Rev. C 18, 2342 (1978)CrossRefADSGoogle Scholar
  49. 49.
    T. Suzuki et al., Phys. Rev. Lett. 75, 3241 (1995)CrossRefADSGoogle Scholar
  50. 50.
    T. Kobayashi et al., Phys. Rev. Lett. 60, 2599 (1988)CrossRefADSGoogle Scholar
  51. 51.
    P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)CrossRefADSGoogle Scholar
  52. 52.
    P.G. Hansen, B.M. Sherrill, Nucl. Phys. A 693, 133 (2001)CrossRefADSGoogle Scholar
  53. 53.
    P.G. Hansen, J.A. Tostevin, Rev. Nucl. Part. Sci. 53, 219 (2003)CrossRefADSGoogle Scholar
  54. 54.
    W. Schwab et al., Z. Phys. A 350, 283 (1995)CrossRefADSGoogle Scholar
  55. 55.
    H. Lenske, F. Hofmann, C.M. Keil, Rep. Prog. Nucl. Part. Phys. 46, 187 (2001)CrossRefADSGoogle Scholar
  56. 56.
    D. Cortina-Gil et al., Phys. Lett. B 529, 36 (2002)CrossRefADSGoogle Scholar
  57. 57.
    R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009)CrossRefADSGoogle Scholar
  58. 58.
    G.D. Alkhazov et al., Phys. Rep. C 42, 89 (1978)CrossRefADSGoogle Scholar
  59. 59.
    P. Egelhof et al., Eur. Phys. J. A 15, 27 (2002)CrossRefADSGoogle Scholar
  60. 60.
    A.V. Dobrovolsky et al., Nucl. Phys. A 766, 1 (2006)CrossRefADSGoogle Scholar
  61. 61.
    T. Yamazaki et al., Phys. Rep. 514, 1 (2012)CrossRefADSGoogle Scholar
  62. 62.
    E. Friedman, G. Soff, J. Phys. G11, L37 (1985)CrossRefADSGoogle Scholar
  63. 63.
    T. Yamazaki et al., Z. Phys. A 355, 219 (1996)ADSGoogle Scholar
  64. 64.
    K. Itahashi et al., Phys. Rev. C 62, 025202 (2000)CrossRefADSGoogle Scholar
  65. 65.
    K. Suzuki et al., Phys. Rev. Lett. 92, 072302 (2004)CrossRefADSGoogle Scholar
  66. 66.
    H. Toki, T. Yamazaki, Phys. Lett. B 213, 129 (1988)CrossRefADSGoogle Scholar
  67. 67.
    H. Toki, S. Hirenzaki, T. Yamazaki, R.S. Hayano, Nucl. Phys. A 501, 653 (1989)CrossRefADSGoogle Scholar
  68. 68.
    H. Gilg et al., Phys. Rev. C 62, 025201 (2000)CrossRefADSGoogle Scholar
  69. 69.
    N. Kaiser, W. Weise, Phys. Lett. B 512, 283 (2001)CrossRefADSGoogle Scholar
  70. 70.
    T. Nishi et al., Phys. Rev. Lett. 120, 152505 (2018)CrossRefADSGoogle Scholar
  71. 71.
    N. Ikeno et al., Eur. Phys. J. A 47 (2011); PTEP 2015, 033D01 (2015)Google Scholar
  72. 72.
    M. Nanova et al., Phys. Rev. C 94, 025205 (2016)CrossRefADSGoogle Scholar
  73. 73.
    Y.K. Tanaka et al., Phys. Rev. Lett. 117, 202501 (2016)CrossRefADSGoogle Scholar
  74. 74.
    Y.K. Tanaka et al., Phys. Rev. C 97, 015202 (2018)CrossRefADSGoogle Scholar
  75. 75.
    R.S. Hayano et al., Rev. Mod. Phys. 82, 2949 (2010)CrossRefADSGoogle Scholar
  76. 76.
    K. Itahashi et al., Prog. Theor. Phys. 128, 601 (2012)CrossRefADSGoogle Scholar
  77. 77.
    H. Nagahiro, Phys. Rev. C 87, 045201 (2013)CrossRefADSGoogle Scholar
  78. 78.
    M. Winkler et al., Nucl. Instrum. Methods B 266, 4183 (2008)CrossRefADSGoogle Scholar
  79. 79.
    C. Rappold et al., Nucl. Phys. A 913, 170 (2013)CrossRefADSGoogle Scholar
  80. 80.
    T.R. Saito, Priv. Commun. (2018)Google Scholar
  81. 81.
    J.S. Winfield et al., Nucl. Instrum. Methods A 704, 76 (2013)CrossRefADSGoogle Scholar
  82. 82.
    H. Geissel et al., Nucl. Instrum. Methods B 317, 277 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hans Geissel
    • 1
    Email author
  • Gottfried Münzenberg
    • 1
  • Christoph Scheidenberger
    • 1
  1. 1.Gesellschaft für Schwerionenforschung GSIDarmstadtGermany

Personalised recommendations