Advertisement

Simulations of Accretions Disks at the Frequency Used of the Event Horizon Telescope

  • Peter O. HessEmail author
Chapter
  • 22 Downloads
Part of the FIAS Interdisciplinary Science Series book series (FIAS)

Abstract

Within the pseudo-complex General Relativity, simulations of accretion disks for SgrA* and M87 are presented at the frequency 250 GHz as used in the Event Horizon Telescope. Differences to the standard theory of General Relativity are pointed out, as the presence of a dark ring followed by a bright one near the position of the black hole.

Notes

Acknowledgements

P.O.H. acknowledges financial support from DGAPA (IN100418) and CONACyT (No. 251817).

References

  1. 1.
    C.M. Will, Living Rev. Relativ. 9, 3 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    B.P. Abbott et al., LIGO Scientific Collaboration and Virgo Collaboration. Phys. Rev. Lett. 116, 061102 (2016)Google Scholar
  3. 3.
    A. Einstein, Ann. Math. 46, 578 (1945)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Einstein, Rev. Mod. Phys. 20, 35 (1948)ADSCrossRefGoogle Scholar
  5. 5.
    M. Born, Proc. R. Soc. A 165, 291 (1938)ADSCrossRefGoogle Scholar
  6. 6.
    M. Born, Rev. Mod. Phys. 21, 463 (1949)ADSCrossRefGoogle Scholar
  7. 7.
    E.R. Caianiello, Nuovo Cim. Lett. 32, 65 (1981)CrossRefGoogle Scholar
  8. 8.
    C. Mantz, T. Prokopec (2008), arXiv:gr-qc—0804.0213v1
  9. 9.
    C. Mantz, T. Prokopec, Found. Phys. 41, 1597 (2011)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P.F. Kelly, R.B. Mann, Class. Quantum Gravity 3, 705 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    P.O. Hess, W. Greiner, Int. J. Mod. Phys. E 18, 51 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Müller, M. Schäfer, W. Greiner, MNRAS 442, 121 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    P.O. Hess, W. Greiner, Memorial 100 years of GR (World Scientific, 2017)Google Scholar
  14. 14.
    P.O. Hess, M. Schäfer, W. Greiner, Pseudo-Complex General Rleativity (Springer, Heidelberg, 2015)Google Scholar
  15. 15.
    M. Visser, Phys. Rev. D 54, 5116 (1996)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1994)zbMATHGoogle Scholar
  17. 17.
    T. Schönenbach, G. Caspar, P.O. Hess, T. Boller, A. Müller, M. Schäfer, W. Greiner, MNRAS 430, 2999 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    D.N. Page, K.S. Thorne, ApJ 191, 499 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    F.H. Vincent, T. Paumard, E. Gourgoulhon, G. Perrin, Class. Quantum Gravity 28, 225011 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    W. Kluzniak, S. Rappaport, ApJ 671, 1990 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Event horizon telescope (2016), http://www.eventhorizontelescope.org
  22. 22.
    R. Schödel, T. Ott, R. Genzel et al., Nature 419, 694 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    E. Quataert, R. Narayan, M.J. Reid, Astrophys. J. 517, L101 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    G. Ponti, E. George, S. Scaringi et al. (2017). Sent to MNRASGoogle Scholar
  25. 25.
  26. 26.
    R. Genzel, R. Schödel, T. Ott et al., Nature 425, 934G (2003)ADSCrossRefGoogle Scholar
  27. 27.
    E.W. Bonning, L. Cheng, G.A.S. Shields, S. Salvander, K. Gebhard, ApJ 659, 211 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    P.O. Hess, MNRAS 462, 3026 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, C.U., A.P. 70-543Mexico CityMexico
  2. 2.Frankfurt Institute for Advanced StudiesJohann Wolfgang Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations