Advertisement

Enabling Learning Experiences for Visually Impaired Children by Interaction Design

  • Florian GüldenpfennigEmail author
  • Armin Wagner
  • Peter Fikar
  • Georg Kaindl
  • Roman Ganhör
Chapter
  • 120 Downloads

Abstract

Interaction design and tangible computing offer rich opportunities for supporting children with impairments by means of enhanced therapeutic toys and educational materials. In order to explore how technology can be utilized to meet special requirements in the education of visually impaired children (and teenagers), we set up a practice-based research project at a special health center and school for the blind. Drawing on a number of design experiments involving educators and affected children, we came up with design proposals that enabled instructive (sensory) experiences despite their impairments in the sensory system. We describe two interactive prototypes in detail – a tangible color-picker toy, that we named The Cuebe, and an Audio-Tactile Map designed for e-learning – and show how they can support children in building new skills by augmenting physical properties and affordances. In both prototypes, tactility, haptics, and interactivity were crucial features, since all experiences originated at the fingertips and then unfolded higher-level sensory and cognitive processes. Moreover, the prototypes were also characterized by a high degree of open-endedness and customizability in their design, allowing educators to incorporate them in flexible ways to meet the needs of the children.

Notes

Acknowledgements

This research has been funded by “Gemeinsame Gesundheitsziele aus dem Rahmen-Pharmavertrag, eine Kooperation von österreichischer Pharmawirtschaft und Sozialversicherung” and by the Sparkling Science program, led by the Austrian Federal Ministry of Science and Research. The authors also thank all involved participants – the preschool children, their Early Intervention therapists, the students, and their teachers as well as the Institute “Integrated Study” for their support.

References

  1. 1.
    Albouys-Perrois, J., Laviole, J., Briant, C., Brock, A.M.: Towards a multisensory augmented reality map for blind and low vision people: A participatory design approach. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. pp. 629:1–629:14. CHI ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3173574.3174203
  2. 2.
    Antle, A.N., Fan, M., Cramer, E.S.: Phonoblocks: A tangible system for supporting dyslexic children learning to read. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 533–538. TEI ’15, ACM, New York, NY, USA (2015), https://doi.org/10.1145/2677199.2687897
  3. 3.
    Asaro, P.M.: Transforming society by transforming technology: the science and politics of participatory design. Accounting, Management and Information Technologies 10(4), 257–290 (2000), http://www.sciencedirect.com/science/article/B6VFY-40X8FS2-1/2/ac8ff34bf4812794b471d535068bea6a CrossRefGoogle Scholar
  4. 4.
    Austrian Federal Ministry of Education, Science and Research: Curriculum for Blind School Children – Lehrplan der Sonderschule für blinde Kinder. Report, Austrian Government (2008), https://www.cisonline.at/fileadmin/kategorien/BGBl_II__Nr_137_Anlage_C_3.pdf
  5. 5.
    Bannon, L.: Reimagining HCI: Toward a More Human-centered Perspective. Interactions 18(4), 50–57 (Jul 2011), https://doi.org/10.1145/1978822.1978833 CrossRefGoogle Scholar
  6. 6.
    Banzi, M., Cuartielles, D.: Arduino. Open-source Electronics Platform [Cross-platform] (2005), https://www.arduino.cc/. Accessed 27 March 2019.
  7. 7.
    Bourne, R.R.A., Flaxman, S.R., Braithwaite, T., Cicinelli, M.V., Das, A., Jonas, J.B., Keeffe, J., Kempen, J.H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Resnikoff, S., Silvester, A., Stevens, G.A., Tahhan, N., Wong, T.Y., Taylor, H.R.: Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. The Lancet Global Health 5(9), e888–e897 (2017), https://doi.org/10.1016/S2214-109X(17)30293-0 CrossRefGoogle Scholar
  8. 8.
    Bowers, J.: The logic of annotated portfolios: Communicating the value of ‘research through design’. In: Proceedings of the Designing Interactive Systems Conference. pp. 68–77. DIS ’12, ACM, New York, NY, USA (2012), https://doi.org/10.1145/2317956.2317968
  9. 9.
    Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research in Psychology 3(2), 77–101 (2006), http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa CrossRefGoogle Scholar
  10. 10.
    Bunce, C., Wormald, R.: Leading causes of certification for blindness and partial sight in England & Wales. BMC Public Health 6, 58–58 (2006), https://www.ncbi.nlm.nih.gov/pubmed/16524463 https://www.ncbi.nlm.nih.gov/pmc/PMC1420283/, 16524463[pmid] PMC1420283[pmcid] 1471-2458-6-58[PII] BMC Public Health
  11. 11.
    Cook, A.M., Hussey, S.: Assistive Technologies: Principles and Practice (2nd Edition). Mosby, 2 edn. (Dec 2001), http://www.worldcat.org/isbn/0323006434
  12. 12.
    Dahlbäck, N., Jönsson, A., Ahrenberg, L.: Wizard of Oz studies – why and how. Knowledge-Based Systems 6(4), 258–266 (1993), http://www.sciencedirect.com/science/article/pii/095070519390017N, Special Issue: Intelligent User Interfaces
  13. 13.
    Dorst, C.: Describing Design – A comparison of paradigms. TU Delft, Delft, Netherlands (1997)Google Scholar
  14. 14.
    Ducasse, J., Brock, A.M., Jouffrais, C.: Accessible interactive maps for visually impaired users. In: Pissaloux, E., Velazquez, R. (eds.) Mobility of Visually Impaired People: Fundamentals and ICT Assistive Technologies, pp. 537–584. Springer International Publishing, Cham (2018), https://doi.org/10.1007/978-3-319-54446-5_17 CrossRefGoogle Scholar
  15. 15.
    Fallman, D.: Design-oriented human-computer interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 225–232. CHI ’03, ACM, New York, NY, USA (2003), https://doi.org/10.1145/642611.642652
  16. 16.
    Fikar, P., Güldenpfennig, F., Ganhör, R.: Pick, place, and follow: A ball run for visually impaired children. In: Proceedings of the 2018 ACM Conference Companion Publication on Designing Interactive Systems. pp. 165–169. DIS ’18 Companion, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3197391.3205430
  17. 17.
    Fikar, P., Güldenpfennig, F., Ganhör, R.: The Cuebe: Facilitating Playful Early Intervention for the Visually Impaired. In: Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 35–41. TEI ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3173225.3173263
  18. 18.
    Fikar, P., Güldenpfennig, F., Ganhör, R.: The use(fulness) of therapeutic toys: Practice-derived design lenses for toy design. In: Proceedings of the 2018 Designing Interactive Systems Conference. pp. 289–300. DIS ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3196709.3196721
  19. 19.
    Flaxman, S.R., Bourne, R.R.A., Resnikoff, S., Ackland, P., Braithwaite, T., Cicinelli, M.V., Das, A., Jonas, J.B., Keeffe, J., Kempen, J.H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Silvester, A., Stevens, G.A., Tahhan, N., Wong, T.Y., Taylor, H.R.: Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. The Lancet Global Health 5(12), e1221–e1234 (2017), https://doi.org/10.1016/S2214-109X(17)30393-5 CrossRefGoogle Scholar
  20. 20.
    Floyd, C.: A systematic look at prototyping. In: Budde, R., Kuhlenkamp, K., Mathiassen, L., Züllinghoven, H. (eds.) Approaches to Prototyping, pp. 1–18. Springer, Berlin, Heidelberg (1984)Google Scholar
  21. 21.
    Garzotto, F., Gonella, R.: An open-ended tangible environment for disabled children’s learning. In: Proceedings of the 10th International Conference on Interaction Design and Children. pp. 52–61. IDC ’11, ACM, New York, NY, USA (2011), https://doi.org/10.1145/1999030.1999037
  22. 22.
    Gaver, W.: What should we expect from research through design? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 937–946. CHI ’12, ACM, New York, NY, USA (2012), https://doi.org/10.1145/2207676.2208538
  23. 23.
    Güldenpfennig, F., Fikar, P., Ganhör, R.: Designing interactive and motivating stimuli for children with visual impairments. In: Proceedings of the 31st British Computer Society Human Computer Interaction Conference. pp. 64:1–64:4. HCI ’17, BCS Learning & Development Ltd., Swindon, UK (2017),  https://doi.org/10.14236/ewic/HCI2017.64
  24. 24.
    Güldenpfennig, F., Fikar, P., Ganhör, R.: Interactive and open-ended sensory toys: Designing with therapists and children for tangible and visual interaction. In: Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 451–459. TEI ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3173225.3173247
  25. 25.
    Guralnick, M.J.: The System of Early Intervention for Children with Developmental Disabilities. In: Jacobson, J.W., Mulick, J.A., Rojahn, J. (eds.) Handbook of Intellectual and Developmental Disabilities, pp. 465–480. Springer US, Boston, MA (2007), https://doi.org/10.1007/0-387-32931-5_24 CrossRefGoogle Scholar
  26. 26.
    Harrison, S., Sengers, P., Tatar, D.: Three paradigms in HCI. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’07, ACM, New York, NY, USA (2007)Google Scholar
  27. 27.
    Hengeveld, B., Frens, J., Deckers, E.: Artefact matters. The Design Journal 19(2), 323–337 (2016), https://doi.org/10.1080/14606925.2016.1129175 CrossRefGoogle Scholar
  28. 28.
    Höök, K., Löwgren, J.: Strong Concepts: Intermediate-level Knowledge in Interaction Design Research. ACM Trans. Comput.-Hum. Interact. 19(3), 23:1–23:18 (Oct 2012), https://doi.org/10.1145/2362364.2362371 CrossRefGoogle Scholar
  29. 29.
    Hornecker, E., Buur, J.: Getting a grip on tangible interaction: A framework on physical space and social interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 437–446. CHI ’06, ACM, New York, NY, USA (2006), https://doi.org/10.1145/1124772.1124838
  30. 30.
    Jadan-Guerrero, J., Jaen, J., Carpio, M.A., Guerrero, L.A.: Kiteracy: A kit of tangible objects to strengthen literacy skills in children with down syndrome. In: Proceedings of the 14th International Conference on Interaction Design and Children. pp. 315–318. IDC ’15, ACM, New York, NY, USA (2015), https://doi.org/10.1145/2771839.2771905
  31. 31.
    Jarvis, N., Cameron, D., Boucher, A.: Attention to detail: Annotations of a design process. In: Proceedings of the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design. pp. 11–20. NordiCHI ’12, ACM, New York, NY, USA (2012), https://doi.org/10.1145/2399016.2399019
  32. 32.
    Joost, G., Bredies, K., Christensen, M., Conradi, F., Unteidig, A.: Design as Research. Birkhäuser De Gruyter, Basel, Switzerland (2016)CrossRefGoogle Scholar
  33. 33.
    Kane, S.K., Hurst, A., Buehler, E., Carrington, P.A., Williams, M.A.: Collaboratively Designing Assistive Technology. Interactions 21(2), 78–81 (Mar 2014), https://doi.org/10.1145/2566462 Google Scholar
  34. 34.
    Korsgaard, H., Klokmose, C.N., Bødker, S.: Computational alternatives in participatory design: Putting the T back in socio-technical research. In: Bossen, C., Smith, R.C., Kanstrup, A.M., McDonnell, J., Teli, M., Bødker, K. (eds.) Proceedings of the 14th Participatory Design Conference: Full Papers – Volume 1. vol. 1, pp. 71–79. ACM, New York, NY, USA (2016)CrossRefGoogle Scholar
  35. 35.
    Koskinen, I., Zimmerman, J., Binder, T., Redström, J., Wensveen, S.: Design Research Through Practice: From the Lab, Field, and Showroom. Morgan Kaufmann (2011)Google Scholar
  36. 36.
    Koskinen, I., Frens, J.: Research prototypes. Archives of Design Research 30(3), 17–26 (8 2017)CrossRefGoogle Scholar
  37. 37.
    L. Riemer-Reiss, M., Wacker, R.: Factors associated with assistive technology discontinuance among individuals with disabilities. Journal of Rehabilitation 66(3), 44–50 (07 2000)Google Scholar
  38. 38.
    Linehan, C., Waddington, J., Hodgson, T.L., Hicks, K., Banks, R.: Designing Games for the Rehabilitation of Functional Vision for Children with Cerebral Visual Impairment. In: CHI ’14 Extended Abstracts on Human Factors in Computing Systems. pp. 1207–1212. CHI EA ’14, ACM, New York, NY, USA (2014), https://doi.org/10.1145/2559206.2581219
  39. 39.
    Majnemer, A.: Benefits of Early Intervention for children with developmental disabilities. Seminars in Pediatric Neurology 5(1), 62–69 (1998), http://www.sciencedirect.com/science/article/pii/S107190919880020X, topics in Developmental DelayCrossRefGoogle Scholar
  40. 40.
    Martin, B., McCormack, L.: Issues surrounding Assistive Technology use and abandonment in an emerging technological culture. In: in Proceedings of Association for the Advancement of Assistive Technology in Europe (AAATE) Conference. pp. 413–417. IOS Press, Düsseldorf, Germany (1999)Google Scholar
  41. 41.
    Martin, M.B.C., Santos-Lozano, A., Martin-Hernandez, J., Lopez-Miguel, A., Maldonado, M., Baladron, C., Bauer, C.M., Merabet, L.B.: Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity. Frontiers in Psychology 7, 1958 (2016), https://www.frontiersin.org/article/10.3389/fpsyg.2016.01958 Google Scholar
  42. 42.
    Metatla, O., Cullen, C.: “Bursting the Assistance Bubble”: Designing Inclusive Technology with Children with Mixed Visual Abilities. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. pp. 346:1–346:14. CHI ’18, ACM, New York, NY, USA (2018), https://doi.org/10.1145/3173574.3173920
  43. 43.
    Metatla, O., Thieme, A., Brulé, E., Bennett, C., Serrano, M., Jouffrais, C.: Toward classroom experiences inclusive of students with disabilities. Interactions 26(1), 40–45 (Dec 2018), https://doi.org/10.1145/3289485 CrossRefGoogle Scholar
  44. 44.
    Moraiti, A., Vanden Abeele, V., Vanroye, E., Geurts, L.: Empowering Occupational Therapists with a DIY-toolkit for Smart Soft Objects. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 387–394. TEI ’15, ACM, New York, NY, USA (2015), https://doi.org/10.1145/2677199.2680598
  45. 45.
    Parkes, D.: Nomad: an audio-tactile tool for the acquisition, use and management of spatially distributed information by visually impaired people. In: Tatham, A.F., Dodds, A.G. (eds.) Proceedings of the second International Conference on Maps and Graphics for Visually Impaired People, pp. 24–29. International Cartographic Association Commission VII (Tactile and Low Vision Mapping) and Royal National Institute for the Blind, London, UK (1988)Google Scholar
  46. 46.
    Phillips, B., Zhao, H.: Predictors of Assistive Technology Abandonment. Assistive Technology 5(1), 36–45 (1993), https://doi.org/10.1080/10400435.1993.10132205, pMID: 10171664CrossRefGoogle Scholar
  47. 47.
    Pierce, J.: On the Presentation and Production of Design Research Artifacts in HCI. In: Proceedings of the 2014 Conference on Designing Interactive Systems. pp. 735–744. DIS ’14, ACM, New York, NY, USA (2014), https://doi.org/10.1145/2598510.2598525
  48. 48.
    Reitberger, W., Güldenpfennig, F., Fitzpatrick, G.: Persuasive Technology Considered Harmful? An Exploration of Design Concerns Through the TV Companion. In: Proceedings of the 7th International Conference on Persuasive Technology: Design for Health and Safety. pp. 239–250. PERSUASIVE’12, Springer-Verlag, Berlin, Heidelberg (2012), https://doi.org/10.1007/978-3-642-31037-9_21 CrossRefGoogle Scholar
  49. 49.
    Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy Sciences 4(2), 155–169 (1973), https://doi.org/10.1007/BF01405730 CrossRefGoogle Scholar
  50. 50.
    Rosenberg, S.A., Zhang, D., Robinson, C.C.: Prevalence of Developmental Delays and Participation in Early Intervention Services for Young Children. Pediatrics 121(6), e1503–e1509 (2008), https://pediatrics.aappublications.org/content/121/6/e1503 CrossRefGoogle Scholar
  51. 51.
    Sanchez, J., Tadres, A., Pascual-Leone, A., Merabet, L.: Blind children navigation through gaming and associated brain plasticity. In: 2009 Virtual Rehabilitation International Conference. pp. 29–36 (June 2009)Google Scholar
  52. 52.
    Sanders, E.B.N., Stappers, P.J.: Co-creation and the new landscapes of design. CoDesign 4(1), 5–18 (2008), https://doi.org/10.1080/15710880701875068 CrossRefGoogle Scholar
  53. 53.
    Schön, Donald A.: The reflective practitioner: how professionals think in action. Temple Smith, London (1983)Google Scholar
  54. 54.
    Seisenbacher, G., Mayer, P., Panek, P., Zagler, W.: 3D-Finger – System for Auditory Support of Haptic Exploration in the Education of Blind and Visually Impaired Students – Idea and Feasibility Study. In: Assistive Technology: From Virtuality to Reality. pp. 73–77. IOS Press, Amsterdam (09 2005)Google Scholar
  55. 55.
    Sonne, T., Jensen, M.M.: Chillfish: A respiration game for children with ADHD. In: Proceedings of the TEI ’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction. pp. 271–278. TEI ’16, ACM, New York, NY, USA (2016), https://doi.org/10.1145/2839462.2839480
  56. 56.
    Stolterman, E.: The nature of design practice and implications for interaction design research. International Journal of Design 2(1), 55–65 (2008), http://www.ijdesign.org/ojs/index.php/IJDesign/article/view/240 Google Scholar
  57. 57.
    Tam, V., Gelsomini, M., Garzotto, F.: Polipo: A tangible toy for children with neurodevelopmental disorders. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction. pp. 11–20. TEI ’17, ACM, New York, NY, USA (2017), https://doi.org/10.1145/3024969.3025006
  58. 58.
    Thieme, A., Morrison, C., Villar, N., Grayson, M., Lindley, S.: Enabling collaboration in learning computer programing inclusive of children with vision impairments. In: Proceedings of the 2017 Conference on Designing Interactive Systems. pp. 739–752. DIS ’17, ACM, New York, NY, USA (2017), https://doi.org/10.1145/3064663.3064689
  59. 59.
    Verhaegh, J., Fontijn, W., Hoonhout, J.: Tagtiles: Optimal challenge in educational electronics. In: Proceedings of the 1st International Conference on Tangible and Embedded Interaction. pp. 187–190. TEI ’07, ACM, New York, NY, USA (2007), https://doi.org/10.1145/1226969.1227008
  60. 60.
    Waddington, J., Linehan, C., Gerling, K., Hicks, K., Hodgson, T.L.: Participatory design of therapeutic video games for young people with neurological vision impairment. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. pp. 3533–3542. CHI ’15, ACM, New York, NY, USA (2015), https://doi.org/10.1145/2702123.2702261
  61. 61.
    Wagner, A.: Collaboratively generated content on the audio-tactile map. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) Computers Helping People with Special Needs. pp. 78–80. Springer Berlin Heidelberg (2010)CrossRefGoogle Scholar
  62. 62.
    Wagner, A., Kaindl, G.: WireTouch: An Open Multi-Touch Tracker based on Mutual Capacitance Sensing (September 2016), {https://doi.org/10.5281/zenodo.61461}
  63. 63.
    Wensveen, S., Matthews, B.: Prototypes and prototyping in design research. In: Rodgers, P.A., Yee, J. (eds.) The Routledge Companion to Design Research. pp. 262–276. Routledge (2014), https://www.routledgehandbooks.com/doi/10.4324/9781315758466.ch21
  64. 64.
    Zimmerman, J., Forlizzi, J.: The role of design artifacts in design theory construction. Artifact 2(1), 41–45 (2008), https://doi.org/10.1080/17493460802276893 CrossRefGoogle Scholar
  65. 65.
    Zimmerman, J., Forlizzi, J., Evenson, S.: Research Through Design As a Method for Interaction Design Research in HCI. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. pp. 493–502. CHI ’07, ACM, New York, NY, USA (2007), https://doi.org/10.1145/1240624.1240704

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Florian Güldenpfennig
    • 1
    Email author
  • Armin Wagner
    • 2
  • Peter Fikar
    • 3
  • Georg Kaindl
    • 2
  • Roman Ganhör
    • 3
  1. 1.New Design University (NDU)St. PöltenAustria
  2. 2.Independent ResearchersViennaAustria
  3. 3.Multidisciplinary Design & User Research (TU Wien)ViennaAustria

Personalised recommendations