CoreCube: Core Decomposition in Multilayer Graphs

  • Boge Liu
  • Fan ZhangEmail author
  • Chen Zhang
  • Wenjie Zhang
  • Xuemin Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11881)


Many real-life complex networks are modelled as multilayer graphs where each layer records a certain kind of interaction among entities. Despite the powerful modelling functionality, the decomposition on multilayer graphs remains unclear and inefficient. As a well-studied graph decomposition, core decomposition is efficient on a single layer graph with a variety of applications on social networks, biology, finance and so on. Nevertheless, core decomposition on multilayer graphs is much more challenging due to the various combinations of layers. In this paper, we propose efficient algorithms to compute the CoreCube which records the core decomposition on every combination of layers. We also devise a hybrid storage method that achieves a superior trade-off between the size of CoreCube and the query time. Extensive experiments on 8 real-life datasets demonstrate our algorithms are effective and efficient.


Core decomposition Multilayer graph Graph processing 


  1. 1.
    Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002). Scholar
  2. 2.
    Altaf-Ul-Amine, M., et al.: Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences. Gen. Inf. 14, 498–499 (2003)Google Scholar
  3. 3.
    Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NIPS, pp. 41–50 (2005)Google Scholar
  4. 4.
    Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049 (2003)Google Scholar
  5. 5.
    Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: the anchored k-core problem. SIAM J. Discrete Math. 29(3), 1452–1475 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boden, B., Günnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs in multi-layer graphs with edge labels. In: SIGKDD, pp. 1258–1266 (2012)Google Scholar
  7. 7.
    Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. PNAS 104(27), 11150–11154 (2007)CrossRefGoogle Scholar
  8. 8.
    Daianu, M., et al.: Breakdown of brain connectivity between normal aging and Alzheimer’s disease: a structural k-core network analysis. Brain Connectivity 3(4), 407–422 (2013)CrossRefGoogle Scholar
  9. 9.
    Dickison, M.E., Magnani, M., Rossi, L.: Multilayer Social Networks. Cambridge University Press, New York (2016)CrossRefGoogle Scholar
  10. 10.
    Galimberti, E., Bonchi, F., Gullo, F.: Core decomposition and densest subgraph in multilayer networks. In: CIKM, pp. 1807–1816 (2017)Google Scholar
  11. 11.
    Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. In: International Conference on Intelligent Systems for Molecular Biology, pp. 213–221 (2005)CrossRefGoogle Scholar
  12. 12.
    Jethava, V., Beerenwinkel, N.: Finding dense subgraphs in relational graphs. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9285, pp. 641–654. Springer, Cham (2015). Scholar
  13. 13.
    Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single PC. Proc. VLDB Endowment 9(1), 13–23 (2015)CrossRefGoogle Scholar
  14. 14.
    Li, R., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In: ICDE, pp. 797–808 (2018)Google Scholar
  15. 15.
    Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient (\(\alpha \), \(\beta \))-core computation: an index-based approach. In: The World Wide Web Conference, WWW 2019, pp. 1130–1141. ACM, New York (2019)Google Scholar
  16. 16.
    Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15(2), 169–190 (1950)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling engagement dynamics in social graphs. In: CIKM, pp. 469–478 (2013)Google Scholar
  19. 19.
    Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)CrossRefGoogle Scholar
  20. 20.
    Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Soc. 6(1), 139–154 (1978)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)Google Scholar
  23. 23.
    Wu, Y., Jin, R., Zhu, X., Zhang, X.: Finding dense and connected subgraphs in dual networks. In: ICDE, pp. 915–926 (2015)Google Scholar
  24. 24.
    Zhang, F., Li, C., Zhang, Y., Qin, L., Zhang, W.: Finding critical users in social communities: the collapsed core and truss problems. In: TKDE (2018)Google Scholar
  25. 25.
    Zhang, F., Yuan, L., Zhang, Y., Qin, L., Lin, X., Zhou, A.: Discovering strong communities with user engagement and tie strength. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 425–441. Springer, Cham (2018). Scholar
  26. 26.
    Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an efficient algorithm to prevent unraveling in social networks. PVLDB 10(6), 649–660 (2017)Google Scholar
  27. 27.
    Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engagement meets similarity: Efficient (k, r)-core computation on social networks. PVLDB 10(10), 998–1009 (2017)Google Scholar
  28. 28.
    Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently reinforcing social networks over user engagement and tie strength. In: ICDE, pp. 557–568 (2018)Google Scholar
  29. 29.
    Zhu, R., Zou, Z., Li, J.: Diversified coherent core search on multi-layer graphs. In: ICDE, pp. 701–712 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boge Liu
    • 1
  • Fan Zhang
    • 2
    Email author
  • Chen Zhang
    • 1
  • Wenjie Zhang
    • 1
  • Xuemin Lin
    • 1
  1. 1.University of New South WalesSydneyAustralia
  2. 2.Guangzhou UniversityGuangzhouChina

Personalised recommendations