The Role of Constitutive Material Laws on the Jacking of Single Pile Into Sandy Soil Using Coupled Eulerian-Lagrangian Method

  • Mohamed AbdelfattahEmail author
  • Khalid Abdel-Rahman
  • Sayed M. Ahmed
  • Yasser M. El-Mossallamy
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)


The great challenge to study the application involving large deformations is a choice of suitable constitutive law to simulate the soil response during installation of displacement piles. Considering, the nonlinear response, stress history, stress pass and the hardening/softening behavior for constitutive law assess to achieve the realistic behavior of piles during installation. In this study, the large deformations response associated with pile jacking are considered using a novel numerical approach which it calls coupled Eulerian-Lagrangian method (CEL). The used constitutive laws in study herein are partly based on elastoplastic theory while the other based on hypoplastic theory. Mohr-Coulomb and Cap plasticity constitutive law based on elastoplastic theory are adopted, while the Hypoplastic constitutive law formulated by Von Wolffersdorff was implemented using a material subroutine (VUMAT). The used constitutive laws are firstly calibrated with database of Hostun sand to simulate the jacking pile and investigate the response of pile using the corresponding constitutive law. Secondly, using the results of laboratory-scale at purdue university for jacking of pile into silica sand of #2Q-ROK are compared with numerical results to investigate the more realistic constitutive law with geotechnical applications involving large deformations such as jacking pile into sandy soil.


  1. Abdelfattah, M., Abdel-Rahman, K., Ahmed, S.M., EL-Mossallamy, Y.M.: Modelling of pile jacking into sandy soil considering large deformation behavior using coupled Eulerian Lagrangian method (CEL). In: Proceedings of the 15th International Conference on Structural and Geotechnical Engineering, Cairo (2018)Google Scholar
  2. Arshad, M.I.: Experimental study of the displacements caused by cone penetration in sand. (Doctoral dissertation, Purdue University) (2014)Google Scholar
  3. Basu, P.: Analysis of shaft resistance of jacked and drilled-displacement piles (Doctoral dissertation, Purdue University) (2009)Google Scholar
  4. Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36(1), 13–26 (1996)CrossRefGoogle Scholar
  5. Craig, W.H., Chua, K.: Deep penetration of spud-can foundations on sand and clay. Géotechnique 40(4), 541–556 (1990)CrossRefGoogle Scholar
  6. Dassault Systèmes, ABAQUS User’s Manual (2016)Google Scholar
  7. Dijkstra, J., Broere, W., Van Tol, A.F.: 45 Modelling displacement pile installation in a finite element method.‏ In: Proceedings of the Second BGA International Conference on Foundations (2008)Google Scholar
  8. Dijkstra, J., Broere, W., van Tol, A.F.: Eulerian simulation of the installation process of a displacement pile. Geotech. Spec. Publ. 186, 135–142 (2009)Google Scholar
  9. Elkadi, A., Galavi, V. Martinelli, M.: Numerical simulation of pile Installation with the material point method. In: Proceedings of the 15th International Conference on Structural and Geotechnical Engineering, Cairo (2018)Google Scholar
  10. Galavi, V., Beuth, L., Coelho, B.Z., Tehrani, F.S., Hölscher, P., Van Tol, F.: Numerical simulation of pile installation in saturated sand using material point method. Procedia Eng. 175, 72–79 (2017)CrossRefGoogle Scholar
  11. Herle, I., Gudehus, G.: Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohesive Frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 4(5), 461–486 (1999)CrossRefGoogle Scholar
  12. Khoa, H.D.V., Jostad, H.P.: Application of coupled Eulerian-Lagrangian method to large deformation analyses of offshore foundations and suction anchors. Int. J. Offshore Polar Eng. 26(03), 304–314 (2016)CrossRefGoogle Scholar
  13. Ko, J., Jeong, S., Lee, J.K.: Large deformation FE analysis of driven steel pipe piles with soil plugging. Comput. Geotech. 71, 82–97 (2016)CrossRefGoogle Scholar
  14. Marcher, T., Vermeer, P.A., Von Wolffersdorff, P.A.: Hypoplastic and elastoplastic modelling—a comparison with test data. In: Constitutive Modelling of Granular Materials, pp. 353–374. Springer, Heidelberg (2000)Google Scholar
  15. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive Frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 2(4), 279–299 (1997)CrossRefGoogle Scholar
  16. Pucker, T., Grabe, J.: Numerical simulation of the installation process of full displacement piles. Comput. Geotech. 45, 93–106 (2012)CrossRefGoogle Scholar
  17. Qiu, G., Henke, S., Grabe, J.: Applications of coupled Eulerian-Lagrangian method to geotechnical problems with large deformations. In: Proceeding of SIMULIA Customer Conference, pp. 420–435 (2009)Google Scholar
  18. Qiu, G., Henke, S., Grabe, J.: Application of a coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput. Geotech. 38(1), 30–39 (2011)CrossRefGoogle Scholar
  19. Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 269(1339), 500–527 (1962)Google Scholar
  20. Sheng, D., Eigenbrod, K.D., Wriggers, P.: Finite element analysis of pile installation using large-slip frictional contact. Comput. Geotech. 32(1), 17–26 (2005)CrossRefGoogle Scholar
  21. Tho, K.K., Leung, C.F., Chow, Y.K., Swaddiwudhipong, S.: Eulerian finite-element technique for analysis of jack-up spudcan penetration. Int. J. Geomech. 12(1), 64–73 (2012)CrossRefGoogle Scholar
  22. Tovar-Valencia, R.D., Galvis-Castro, A., Salgado, R., Prezzi, M.: Effect of surface roughness on the shaft resistance of displacement model piles in sand. J. Geotech. Geoenviron. Eng. 144(3) (2018a)Google Scholar
  23. Tovar-Valencia, R.D., Galvis-Castro, A.C., Prezzi, M., Salgado, R.: Short-term setup of jacked piles in a calibration chamber. J. Geotech. Geoenviron. Eng. 144(12) (2018b)Google Scholar
  24. Von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive Frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 1(3), 251–271 (1996)CrossRefGoogle Scholar
  25. Wu, W., Bauer, E.: A simple hypoplastic constitutive model for sand. Int. J. Numer. Anal. Methods Geomech. 18(12), 833–862 (1994)CrossRefGoogle Scholar
  26. Yu, L., Hu, Y., Liu, J., Randolph, M.F., Kong, X.: Numerical study of spudcan penetration in loose sand overlying clay. Comput. Geotech. 46, 1–12 (2012)CrossRefGoogle Scholar
  27. Zhao, J., Jang, B.S., Duan, M., Song, L.: Simplified numerical prediction of the penetration resistance profile of spudcan foundation on sediments with interbedded medium-loose sand layer. Appl. Ocean Res. 55, 89–101 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohamed Abdelfattah
    • 1
    Email author
  • Khalid Abdel-Rahman
    • 2
  • Sayed M. Ahmed
    • 3
  • Yasser M. El-Mossallamy
    • 4
  1. 1.Ain Shams UniversityCairoEgypt
  2. 2.Institute of Geotechnical EngineeringLeibniz UniversityHannoverGermany
  3. 3.GeotechnicalAin Shams UniversityCairoEgypt
  4. 4.Geotechnical EngineeringAin Shams UniversityCairoEgypt

Personalised recommendations