Advertisement

Numerical Study of Passive Earth Pressure on Retaining Walls

  • Meriem Fakhreddine Bouali
  • Mounir BouassidaEmail author
Conference paper
Part of the Sustainable Civil Infrastructures book series (SUCI)

Abstract

The determination of passive earth pressure by a vertical rigid wall on a horizontal backfill made up of cohesion less material is studied. Two types of movement were considered to generate the limit equilibrium of passive earth: translation movement, and rotation around the top of the rigid wall. Analysis consisted of series of 2D finite difference FLAC code. Parametric study included the effect of type of wall movement, soil-wall interface friction angle for analyzing the distribution of passive pressure and the location of resulting passive. Predicted results were found in good agreement with measurements obtained from scaled test models and full-scale retaining structure. When the translation movement is assumed, the distribution of passive earth pressure is overall linear with depth. In turn, when the mode of rotation around the top is considered, the variation of passive pressure with depth is rather non-linear. Further, the respective resultant force of passive pressure exerted on the retaining wall are located at different depth which are both lesser than one-third of the height of the wall. The location of passive force is also depending on the soil-wall interface friction angle.

Keywords

Backfill Cohesionless Passive pressure Rigid wall Rotation Translation 

References

  1. Bang, S.: Active earth pressure behind retaining walls. J. Geotech. Eng. Div. 111(3), 407–412 (1985)CrossRefGoogle Scholar
  2. Benmeddour, D., et al.: Numerical study of passive and active earth pressures of sands. Comput. Geotech. 40, 34–44 (2012).  https://doi.org/10.1016/j.compgeo.2011.10.002CrossRefGoogle Scholar
  3. Caquot, A., Kérisel, J.: Tables for the Calculation of Passive Pressure, Active Pressure and Bearing Capacity of Foundations. Gauthiers-Villars, Paris (1948). (in French)Google Scholar
  4. Clough, G.W., Duncan, J.M.: Finite element analyses of retaining wall behaviour. J. Soil Mech. Found. Eng. 97(12), 1657–1673 (1971)Google Scholar
  5. Coulomb, C.A.: Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs à l’architecture. In: Memoires de Mathematique de l’Academie Royale de Science par divers Savants, vol. 7, Paris (1776)Google Scholar
  6. De Borst, R., Vermeer, P.A.: Possibilities and limitations of finite elements for limit analysis. Géotechnique 34(2), 195–202 (1984)CrossRefGoogle Scholar
  7. FLAC – Fast Lagrangian Analysis of Continua, version 5.0. Itasca Consulting Group, Inc., Minneapolis (2005)Google Scholar
  8. Hazarika, H., Matsuzawa, H.: Wall displacement modes dependent active earth pressure analyses using smeared shear band method with two bands. Comput. Geotech. 19(3), 193–219 (1996)CrossRefGoogle Scholar
  9. Kérisel, J., Absi, E.: Active and Passive Earth Pressure Tables. Balkema, Rotterdam (1990)Google Scholar
  10. Lancellotta, R.: Analytical solution of passive earth pressure. Géotechnique 52(8), 617–619 (2002)CrossRefGoogle Scholar
  11. Peng, S.Q., et al.: A general method to calculate passive earth pressure on rigid retaining wall for all displacement modes. Trans. Nonferrous Met. Soc. China 22, 1526–1532 (2012)CrossRefGoogle Scholar
  12. Rankine, W.J.M.: On the stability of loose earth. Philos. Trans. Roy. Soc. Lond. 147, 9–27 (1857)CrossRefGoogle Scholar
  13. Reddy, et al.: Computation of passive earth pressure coefficients for a horizontal cohesionless backfill using the method of slices. Int. J. Adv. Civ. Eng. Archit. Res. 2(1), 32–41 (2013)Google Scholar
  14. Roscoe, K.H.: The influence of strains in soil mechanics. Géotechnique 20(2), 129–170 (1970)CrossRefGoogle Scholar
  15. Salençon, J.: Introduction to the yield design theory and its applications to soil mechanics. Eur. J. Mech. A/Solids 9(5), 477–500 (1990)Google Scholar
  16. Soubra, A.H., Macuh, B.: Active and passive earth pressure coefficients by a kinematical approach. Proc. Inst. Civ. Eng. Geotech. Eng. 155(2), 119–131 (2002).  https://doi.org/10.1680/geng.2002.155.2.119CrossRefGoogle Scholar
  17. Terzaghi, K.: A fundamental fallacy in earth pressure computation. J. Boston Soc. Civ. Eng. 23, 71–88 (1936)Google Scholar
  18. Terzaghi, K.: General wedge theory of earth pressure. ASCE Trans. 106, 68–80 (1941)Google Scholar
  19. Terzaghi, K., Peck, R.B., Mesri, G.: Soil Mechanics in Engineering Practice, 3rd edn. Wiley, New York (1996)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Sciences and Technology, Laboratory of Management, Maintenance and Rehabilitation of Facilities and Urban InfrastructuresUniversity of Souk AhrasSouk AhrasAlgeria
  2. 2.Université de Tunis El Manar- Ecole Nationale d’Ingénieurs de Tunis, LR14ES03-Ingénierie Géotechnique et GéorisqueTunisTunisia

Personalised recommendations