Uniform Random Process Model Revisited
Abstract
Recently, a proper bisimulation equivalence relation for random process model has been defined in a model independent approach. Model independence clarifies the difference between nondeterministic and probabilistic actions in concurrency and makes the new equivalence relation to be congruent. In this paper, we focus on the finite state randomized \(\text {CCS} \) model and deepen the previous work in two aspects. First, we show that the equivalence relation can be decided in polynomial time. Second, we give a sound and complete axiomatization system for this model. The algorithm and axiomatization system also have the merit of model independency as they can be easily generalized to the randomized extension of any finite state concurrent model.
Notes
Acknowledgement
We are grateful to Prof. Yuxi Fu for his instructive discussions and feedbacks. We thank Dr. Mingzhang Huang, Dr. Qiang Yin and other members of BASICS for offering helps in the revision stage. We also thank the anonymous referees for their questions and detailed comments. The support from the National Science Foundation of China (61772336, 61872142, 61572318) is acknowledged.
References
- 1.Andova, S.: Process algebra with probabilistic choice. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 111–129. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48778-6_7CrossRefGoogle Scholar
- 2.Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: Acp with generative probabilities. Inf. Comput. 121(2), 234–255 (1995)MathSciNetCrossRefGoogle Scholar
- 3.Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_14CrossRefGoogle Scholar
- 4.Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_31CrossRefGoogle Scholar
- 5.Deng, Y.: Semantics of Probabilistic Processes: An Operational Approach. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45198-4CrossRefGoogle Scholar
- 6.Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 110–124. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31982-5_7CrossRefGoogle Scholar
- 7.Fu, Y.: Checking equality and regularity for normed BPA with silent moves. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 238–249. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_23CrossRefGoogle Scholar
- 8.Fu, Y.: A uniform approach to random process model (2019). https://arxiv.org/pdf/1906.09541.pdf
- 9.Giacalone, A., Jou, C.C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of IFIP TC2 Working Conference on Programming Concepts and Methods. Citeseer (1990)Google Scholar
- 10.Glabbeek, R.J.: A complete axiomatization for branching bisimulation congruence of finite-state behaviours. In: Borzyszkowski, A.M., Sokołowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57182-5_39CrossRefGoogle Scholar
- 11.van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative, and stratified models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)MathSciNetCrossRefGoogle Scholar
- 12.van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996)MathSciNetCrossRefGoogle Scholar
- 13.Hansson, H., Jonsson, B.: A framework for reasoning about time and reliability. In: Proceedings of Real-Time Systems Symposium, pp. 102–111. IEEE (1989)Google Scholar
- 14.Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proceedings of 11th Real-Time Systems Symposium, pp. 278–287. IEEE (1990)Google Scholar
- 15.Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous \(\pi \)-calculus. In: Tiuryn, J. (ed.) FoSSaCS 2000. LNCS, vol. 1784, pp. 146–160. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46432-8_10CrossRefGoogle Scholar
- 16.Huang, M., Yin, Q.: Two lower bounds for BPA. In: 28th International Conference on Concurrency Theory, CONCUR 2017, 5–8 September 2017, Berlin, Germany, pp. 20:1–20:16 (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.20
- 17.Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039071CrossRefGoogle Scholar
- 18.Kučera, A., Jančar, P.: Equivalence-checking on infinite-state systems: techniques and results. Theory Pract. Logic Programm. 6(3), 227–264 (2006)MathSciNetCrossRefGoogle Scholar
- 19.Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)MathSciNetCrossRefGoogle Scholar
- 20.Lowe, G.: Probabilities and priorities in timed CSP (1993)Google Scholar
- 21.Milner, R.: Communication and Concurrency, vol. 84. Prentice hall, New York (1989)Google Scholar
- 22.Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Inf. Comput. 81(2), 227–247 (1989)MathSciNetCrossRefGoogle Scholar
- 23.Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_25CrossRefGoogle Scholar
- 24.Stark, E.W., Smolka, S.A.: A complete axiom system for finite-state probabilistic processes. In: Proof, Language, and Interaction, pp. 571–596 (2000)Google Scholar