Advertisement

Uniform Random Process Model Revisited

  • Wenbo ZhangEmail author
  • Huan LongEmail author
  • Xian XuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11893)

Abstract

Recently, a proper bisimulation equivalence relation for random process model has been defined in a model independent approach. Model independence clarifies the difference between nondeterministic and probabilistic actions in concurrency and makes the new equivalence relation to be congruent. In this paper, we focus on the finite state randomized \(\text {CCS} \) model and deepen the previous work in two aspects. First, we show that the equivalence relation can be decided in polynomial time. Second, we give a sound and complete axiomatization system for this model. The algorithm and axiomatization system also have the merit of model independency as they can be easily generalized to the randomized extension of any finite state concurrent model.

Notes

Acknowledgement

We are grateful to Prof. Yuxi Fu for his instructive discussions and feedbacks. We thank Dr. Mingzhang Huang, Dr. Qiang Yin and other members of BASICS for offering helps in the revision stage. We also thank the anonymous referees for their questions and detailed comments. The support from the National Science Foundation of China (61772336, 61872142, 61572318) is acknowledged.

References

  1. 1.
    Andova, S.: Process algebra with probabilistic choice. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 111–129. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48778-6_7CrossRefGoogle Scholar
  2. 2.
    Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: Acp with generative probabilities. Inf. Comput. 121(2), 234–255 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 119–130. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63166-6_14CrossRefGoogle Scholar
  4. 4.
    Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-48224-5_31CrossRefGoogle Scholar
  5. 5.
    Deng, Y.: Semantics of Probabilistic Processes: An Operational Approach. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-45198-4CrossRefGoogle Scholar
  6. 6.
    Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 110–124. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31982-5_7CrossRefGoogle Scholar
  7. 7.
    Fu, Y.: Checking equality and regularity for normed BPA with silent moves. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 238–249. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39212-2_23CrossRefGoogle Scholar
  8. 8.
    Fu, Y.: A uniform approach to random process model (2019). https://arxiv.org/pdf/1906.09541.pdf
  9. 9.
    Giacalone, A., Jou, C.C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of IFIP TC2 Working Conference on Programming Concepts and Methods. Citeseer (1990)Google Scholar
  10. 10.
    Glabbeek, R.J.: A complete axiomatization for branching bisimulation congruence of finite-state behaviours. In: Borzyszkowski, A.M., Sokołowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57182-5_39CrossRefGoogle Scholar
  11. 11.
    van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative, and stratified models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. J. ACM 43(3), 555–600 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hansson, H., Jonsson, B.: A framework for reasoning about time and reliability. In: Proceedings of Real-Time Systems Symposium, pp. 102–111. IEEE (1989)Google Scholar
  14. 14.
    Hansson, H., Jonsson, B.: A calculus for communicating systems with time and probabilities. In: Proceedings of 11th Real-Time Systems Symposium, pp. 278–287. IEEE (1990)Google Scholar
  15. 15.
    Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous \(\pi \)-calculus. In: Tiuryn, J. (ed.) FoSSaCS 2000. LNCS, vol. 1784, pp. 146–160. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-46432-8_10CrossRefGoogle Scholar
  16. 16.
    Huang, M., Yin, Q.: Two lower bounds for BPA. In: 28th International Conference on Concurrency Theory, CONCUR 2017, 5–8 September 2017, Berlin, Germany, pp. 20:1–20:16 (2017).  https://doi.org/10.4230/LIPIcs.CONCUR.2017.20
  17. 17.
    Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990).  https://doi.org/10.1007/BFb0039071CrossRefGoogle Scholar
  18. 18.
    Kučera, A., Jančar, P.: Equivalence-checking on infinite-state systems: techniques and results. Theory Pract. Logic Programm. 6(3), 227–264 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lowe, G.: Probabilities and priorities in timed CSP (1993)Google Scholar
  21. 21.
    Milner, R.: Communication and Concurrency, vol. 84. Prentice hall, New York (1989)Google Scholar
  22. 22.
    Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Inf. Comput. 81(2), 227–247 (1989)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44618-4_25CrossRefGoogle Scholar
  24. 24.
    Stark, E.W., Smolka, S.A.: A complete axiom system for finite-state probabilistic processes. In: Proof, Language, and Interaction, pp. 571–596 (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BASICSShanghai Jiao Tong UniversityShanghaiChina
  2. 2.East China University of Science and TechnologyShanghaiChina

Personalised recommendations