METABIOTICS pp 15-21 | Cite as

Metabolic Relationship Between the Host and Its Gut Microbiota

  • Boris A. Shenderov
  • Alexander V. Sinitsa
  • Mikhail M. Zakharchenko
  • Christine Lang


Symbiotic microorganisms ever-present in the organisms of adult people form over 25 thousand different biologically and pharmacologically active compounds. With regard to potential biological effects, the most extensively studied are short-chain fatty and bile acids, choline metabolites, the derivatives of phenol, benzene and phenyl, indole derivatives, vitamins, polyamines, lipids, enzymes and other proteins, amino acids (Beloborodova et al. 2011, Shenderov et al. 2010, Carding et al. 2015, Chernevskaya and Beloborodova 2018, Clarke et al. 2014, Engevik and Versalovic 2017, Ilinskaya et al. 2017, Maguire and Maguire 2019, Nicholson et al. 2012, Neis et al. 2015, Shaikh and Sreeja 2017), catecholamines and other neuromodulators (Oleskin et al. 2016, Clarke et al. 2014, El Aidy et al. 2016, Ilinskaya et al. 2017, Maguire and Maguire 2019, Oleskin et al. 2017), gas molecules (Shenderov 2015, Carding et al. 2015) and many others (Chervinets et al. 2018, Carding et al. 2015, Engevik and Versalovic 2017, Nicholson et al. 2012). In healthy people, gut symbiotic microorganisms are the source of these microbial bioactive molecules. In the process of evolution, humans have been selecting and retaining the kinds of microorganisms that produced substances best of all corresponding to the healthy organism in their physical, chemical and biological characteristics (valency, isotope condition, structural, stereoisomeric shape of the molecule, solubility, dispersity, oxidation state, half-life, safety and other parameters) (Shenderov 2014b, Bik et al. 2018, Shenderov 2011b, Sonnenburg and Backhed 2016, Wilson and Nicholson 2017). The presence in the digestive tract of various nutrients and diverse components of gut symbiotic microbiota may considerably alter the intensity of effects of probiotic bacterial metabolites or even completely eliminate their action. Violation of homeostasis of these molecules can often be a risk factor for different diseases (Shenderov 2014b, Beloborodova and Osipov 2000, Clarke et al. 2014, Maguire and Maguire 2019).


  1. Beloborodova NV, Bairamov IT, Olenin AYu, Fedotcheva NI. Exometabolites of some anaerobic microorganisms of human microflora. Biomedical chemistry. 2011;57(1):95–105 (in Russian).Google Scholar
  2. Beloborodova NV, Osipov GA. Small molecules originating from microbes (SMOM) and their role in microbes-host relationship. Microb Ecol Health Dis. 2000;12:12–21.Google Scholar
  3. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–541. doi: Scholar
  4. Bik EM, Ugalde JA, Cousins J, Goddard AD, Richman J, Apte ZS. Microbial biotransformations in the human distal gut. British J Pharmacology. 2018;175(24):4404–4414. doi: Scholar
  5. Blum HE. The human microbiome. Advan Med Science. 2017;62:414–420. doi: Scholar
  6. Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut microbes. 2016;7:216–234. doi: Scholar
  7. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191. doi: Scholar
  8. Chernevskaya EA, Beloborodova NV. Gut microbiome in critical illness (Review). General Reanimatology. 2018;14(5):96–119. Scholar
  9. Chervinets YuV, Chervinets VM, Shenderov BA. The modern view on the biotechnological potential of human symbiotic microbiota. Upper Volga medical journal. 2018;17(1):19–26 (in Russian).Google Scholar
  10. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Molecular Endocrinology. 2014;28(8);1221–1238. doi: Scholar
  11. Dorrestein PC, Mazmanian SK, Knight R. Finding the missing links among metabolites, microbes, and the host. Immunity. 2014;40:824–832. doi: Scholar
  12. El Aidy S, Stilling RM, Dinan TG, Cryan JT. Microbiome to Brain: Unravelling the multidirectional axes of communication. Adv Exp Med Biol. 2016;874:301–336.CrossRefGoogle Scholar
  13. Engevik MA, Versalovic J. Biochemical feature of beneficial microbes: foundation for therapeutic microbiology. Microbial Spectr. 2017;5(5). doi:
  14. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y et al. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–564. doi: Scholar
  15. García-Cañaveras JC, Donato MT, Castell JV, Lahoz A. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res. 2012;53:2231–2241. doi: Scholar
  16. Gilbert JA, Quinn RA, Debelius J, Morton J, Garg N et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535:94–103. doi: Scholar
  17. Hall A, Versalovic J. Microbial metabolism in the mammalian gut: molecular mechanisms and clinical implications. J Pediatr Gastroenterol Nutr. 2018;66 Suppl 3:72–79. doi: Scholar
  18. Hood L. Tackling the microbiome. Science. 2012;336(6086):1209. doi: Scholar
  19. Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG. Secretome of intestinal Bacilli; a nature guard against pathologies. Front Microbiol. 2017;8:1666. doi: Scholar
  20. Lachnit T et al. Exposure of the Host-Associated Microbiome to Nutrient-Rich Conditions May Lead to Dysbiosis and Disease Development — an Evolutionary Perspective. mBio. 2019;10(3):e00355–19. doi:
  21. Maguire M, Maguire G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev Neurosci. 2019;30(2):179–201. doi: Scholar
  22. Marcobal A, Kashyap P.C, Nelson T.A, Aronov P.A, Donia M.S, Spormann A, Fischbach M.A, Sonnenburg J.L. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 2013;7(10):1933–1943. doi: Scholar
  23. Midtvedt T. Microflora-associated characteristics (MACs) and germfree animal characteristics (GACs) in man and animal. Microecology and Therapy. 1985;15:295–302.Google Scholar
  24. Neis EP, Dejong CH, Rensen SS. The role of microbial amino acids metabolism. Nutrients. 2015;7(4):2930–2946. doi: Scholar
  25. Nicholson JK, Holmes E, Kinross J, Gibson G, Jia W, Pettersson S. Host-Gut microbiota metabolic interactions. Science. 2012;336(6086):1262–1267. doi: Scholar
  26. Nicholson JK, Holmes E, Wilson ID. Gut microorganisms mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3:431–438. doi: Scholar
  27. Oleskin AV, El’-Registan GI, Shenderov BA. Role of neuromediators in the functioning of the human microbiota: «business talks» among microorganisms and the microbiota-host dialogue. Microbiology. 2016;85(1):1–22.CrossRefGoogle Scholar
  28. Oleskin AV, Shenderov BA, Rogovsky VS. Role of Neurochemicals in the Interaction between the Microbiota and the Immune and the Nervous System of the Host Organism. Probiotics and Antimicrobial Proteins. 2017;9(3):215–234. doi: Scholar
  29. Panyushin SK. Participation of symbiotic microflora in providing energy needs of the person. 2012. www. Accessed 28 June 2019 (in Russian).Google Scholar
  30. Pérez-Jiménez J, Fezeu L, Touvier M et al. Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr. 2011;93(6):1220–1228. doi: Scholar
  31. Quartieri A, García-Villalba R, Amaretti A et al. Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Mol Nutr Food Res. 2016;60(7):1590–1601. doi: Scholar
  32. Said HM. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol. 2013;305(9):G601–610. doi: Scholar
  33. Shaikh AM, Sreeja V. Metabiotics and their Health Benefits. Intl. J. Food. Ferment. 2017;6(1):11–23. doi: Scholar
  34. Shenderov BA, Ivanova YaV, Sorokina IM. Complex food product enrichment. PATENT RF 2397246. 2010 (in Russian).Google Scholar
  35. Shenderov BA, Midtvedt T. Epigenomic programing: a future way to health? Microb Ecol Health Dis. 2014;25:24145. doi: Scholar
  36. Shenderov BA, Mitrokhin DD, Zaslavskaya PL. The effect of antibiotics on excretion of different metabolites in the faeces of rats. Microecology and Therapy. 1990;20:53–61.Google Scholar
  37. Shenderov BA, Mitrokhin SD, Glukhova EV, Vagina IM, Ivanova LV et al. The influence of antibiotics on excretion with faeces of some microbial metabolites. Antibiotics. 1989;34:665–669.Google Scholar
  38. Shenderov BA. Functional nutrition and its role in the prevention of metabolic syndrome. Moscow: DeLi print; 2008 (in Russian).Google Scholar
  39. Shenderov BA. Probiotic (symbiotic) bacterial languages. Anaerobe. 2011;17(6):490–495. doi: Scholar
  40. Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56–64. doi: Scholar
  41. Tamm AO, Viya MP, Mikelsaar ME, Sijgur UKh. Metabolites of the intestinal flora in the diagnostic of dysbiosis of the intestines. Antibiotics. 1987;32:191–195.Google Scholar
  42. Tomas-Barberan F, García-Villalba R, Quartieri A et al. In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res. 2014;58(5):1122–1131. doi: Scholar
  43. Tomás-Barberán FA, González-Sarrías A, García-Villalba R et al. Urolithins, the rescue of «old» metabolites to understand a «new» concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res. 2017;61(1). doi: Scholar
  44. Trugnan G, Freitas M, Sapin C. Molecular basis for the cross talk between pathogens, intestinal cells, and gut microflora. In: Heidt PJ, Midtvedt T et al., editors. Old Herborn University Seminar Monograph. 15: Probiotics: bacteria and bacterial fragments as immunomodulatory agents. Germany: Herborn Litterae, Herborn-Dill; 2002. p. 15–23. Accessed 28 June 2019.
  45. Volkov MYu, Tkachenko EI, Vorobeichikov EV, Sinitsa AV. Bacillus subtilis metabolites as a novel promising probiotic preparations. Zh Mikrobiol (Moscow). 2007;2:75–80 (in Russian).Google Scholar
  46. Wang Z, Klipfell E, Bennett BJ et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. doi: Scholar
  47. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106(10):3698–3703. doi: Scholar
  48. Wilson ID, Nicholson JK. Gut microbiome interaction with drug metabolism, efficacy and toxicity. Transl Res. 2017;179:204–222. doi: Scholar
  49. Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol. 2018;200(2):203–217. doi: Scholar
  50. Zelante T, Iannitti RG, Cunha C et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–385. doi: Scholar
  51. Zierer J, Jackson MA, Kastenmuller G, Maqngino M, Long T, Telenti A et al. The fecal metabolome as a functional readout of the gut microbiome. Nature genetics. 2018;50:790–795. doi: Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Boris A. Shenderov
    • 1
  • Alexander V. Sinitsa
    • 2
  • Mikhail M. Zakharchenko
    • 2
  • Christine Lang
    • 3
  1. 1.Research Laboratory for Design & Implementation of Personalized Nutrition-Related Product & DietsK.G. Razumovsky University of Technology & ManagementMoscowRussia
  2. 2.Kraft Ltd.St. PetersburgRussia
  3. 3.MBCC GroupBerlinGermany

Personalised recommendations