Advertisement

METABIOTICS pp 79-92 | Cite as

Some New Targets and Approaches to the Construction of Intended-Use Metabiotics

  • Boris A. Shenderov
  • Alexander V. Sinitsa
  • Mikhail M. Zakharchenko
  • Christine Lang
Chapter
  • 22 Downloads

Abstract

Tables 1, 2, 3, 4, 5, 6, 7 and 8 show some new targets and approaches to the use of low molecular microbial molecules for the development and production of essentially new metabiotics in order to prevent and treat common conditions associated with microecological imbalance in humans. These approaches, if realized, will enable to promptly and efficiently use the potential of the basic representatives of human symbiotic microbiota when creating targeted metabiotics.

Bibliography

  1. Althaus M, Behnsen J, Deriu E, Sassone-Corci M, Raffatellu M. Probiotics: properties, examples, and specific applications. Cold Spring Perspect Med. 2013;3:a0110074. doi: https://doi.org/10.1101/cshperspect.a010074.CrossRefGoogle Scholar
  2. Atkinson S, William P. Quorum sensing and social networking in the microbial world. J Royal Soc Interface. 2009;6(40):959–78. doi: https://doi.org/10.1098/rsif.2009.0203.CrossRefGoogle Scholar
  3. Bhat MI, Kapila R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr Rev. 2017;75(1):374–389. doi: https://doi.org/10.1093/nutrit/nux001.CrossRefPubMedGoogle Scholar
  4. Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nature Immunology. 2017;18(6):851–860. doi: https://doi.org/10.1038/ni.3780.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–546. doi: https://doi.org/10.1038/nature17645.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790–801. doi: https://doi.org/10.1038/nri3535.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chernevskaya EA, Beloborodova NV. Gut microbiome in critical illness (Review). General Reanimatology. 2018;14(5):96–119.  https://doi.org/10.15360/1813-9779-2018-5-96-119.CrossRefGoogle Scholar
  8. Chervinets YuV, Chervinets VM, Shenderov BA. The modern view on the biotechnological potential of human symbiotic microbiota. Upper Volga medical journal. 2018;17(1):19–26 (in Russian).Google Scholar
  9. Choi SW, Friso S. Epigenetics: A New Bridge between Nutrition and Health. Adv Nutr. 2010;1(1):8–16. doi: https://doi.org/10.3945/an.110.1004.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Corthesy B, Gaskins HR, Marcenier A. Cross-Talk between Probiotic Bacteria and the Host Immune System. J Nutr. 2007;137:781–790. doi: https://doi.org/10.1093/jn/137.3.781S.CrossRefGoogle Scholar
  11. Cyr AR, Hitchler MJ, Domann FE. Regulation of SOD2 in cancer by histone modifications and CpG methylation: closing the loop between redox biology and epigenetics. Antiox Redox Signal. 2013;18(15):1946–1955. doi: https://doi.org/10.1089/ars.2012.4850.CrossRefGoogle Scholar
  12. El Aidy S, Stilling RM, Dinan TG, Cryan JT. Microbiome to Brain: Unravelling the multidirectional axes of communication. Adv Exp Med Biol. 2016;874:301–336.CrossRefGoogle Scholar
  13. Engevik MA, Versalovic J. Biochemical feature of beneficial microbes: foundation for therapeutic microbiology. Microbial Spectr. 2017;5(5). doi: https://doi.org/10.1128/microbiolspec.BAD-0012-2016.
  14. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109. doi: https://doi.org/10.1038/nrg3142.CrossRefPubMedGoogle Scholar
  15. Foster JA, Lyte M, Meyer E, Cryan JF. Gut Microbiota and Brain Function: An Evolving Field in Neuroscience. Int J Neuropsychopharmacol. 2016;19(5):pyv114. doi: https://doi.org/10.1093/ijnp/pyv114.CrossRefGoogle Scholar
  16. Ghisian Y, Nana G, Ripoll C, Cabin-Flaman A, Gibouin D, Delaune A et al. Division-Based, Growth Rate Diversity in bacteria. Front Microbiol. 2018;9;849. doi: https://doi.org/10.3389/fmicb.2018.00849.
  17. Jimenez-Chillaron JC, Diaz R, Martinez D, Pentinat T, Ramon-Krauel M, Ribo S, Plosch T. The role of nutrition on epigenetic modifications and their implications on health. Biochimie. 2012;94:2242–2263. doi: https://doi.org/10.1016/j.biochi.2012.06.012.CrossRefPubMedGoogle Scholar
  18. Jones RM, Neish AS. Redox signaling mediated by the gut microbiota. Free Radical Biology and Medicine. 2017;105:41–47. doi: https://doi.org/10.1016/j.freeradbiomed.2016.10.495.CrossRefPubMedGoogle Scholar
  19. Kamada N, Nunez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology. 2014;146(6):1477–1488. doi: https://doi.org/10.1053/j.gastro.2014.01.060.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Karczewski J, Poniedzialek B, Adamski Z, Rzymski P. The effects of the microbiota on the host immune system. Autoimmunity. 2014;47(8):494–504. doi: https://doi.org/10.3109/08916934.2014.938322.CrossRefPubMedGoogle Scholar
  21. Kazerouni A, Burgess J, Burns LJ, Wein LM. Optimal screening and donor management in a public stool bank. Microbiome. 2015;3:75. doi: https://doi.org/10.1186/s40168-015-0140-3.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Laino J, Villena J, Kanmani P, Kitazawa H. Immunoregulatory effects triggered by lactic acid bacteria exopolysaccharides: new insights into molecular interaction with host cells. Microorganisms. 2016;4:27. doi: https://doi.org/10.3390/microorganisms4030027.CrossRefPubMedCentralGoogle Scholar
  23. Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, O’Conell Motherway M et al. Identification of probiotic effect or molecules: present state and future perspectives. Curr Opin Biotechnol. 2018;49:217–223. doi: https://doi.org/10.1016/j.copbio.2017.10.007.CrossRefGoogle Scholar
  24. Lebeer S, Vanderleyden J, De Keersmaeker SCJ. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008;72(4):728–764. doi: https://doi.org/10.1128/MMBR.00017-08.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Legent G, Norris V. Hybolites: novel therapeutic toolsfor targeting hyperstructure in bacteria. Recent Pat on Antiinfect Drug Discov. 2009;4(2):90–95.CrossRefGoogle Scholar
  26. Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive compounds. Curr Med Chem. 2010; 17(20):2141–2151.CrossRefGoogle Scholar
  27. Maguire M, Maguire G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev Neurosci. 2019;30(2):179–201. doi: https://doi.org/10.1515/revneuro-2018-0024.CrossRefGoogle Scholar
  28. Marco ML, Pavan S, Kleerebezem M. Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol. 2006;17(2):204–210. doi: https://doi.org/10.1016/j.copbio.2006.02.005.CrossRefPubMedGoogle Scholar
  29. Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiology. 2015;6:572. doi: https://doi.org/10.3389/fmicb.2015.00572.CrossRefGoogle Scholar
  30. Minushkin ON, Ardatskaya MD, Sergeev AV, Volkov MYu, Sinitsa AV. Experience in the use of probiotic «Baktistatin» in the treatment of chronic pancreatitis. Pharmacy. 2006;3:39–43 (in Russian).Google Scholar
  31. Mischke M, Plosch T. The gut microbiota and their metabolites: Potential implications for the host epigenome. Adv Exp Med Biol. 2016;902:33–44. doi: https://doi.org/10.1007/978-3-319-31248-4_3.CrossRefPubMedGoogle Scholar
  32. Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J. Probiotics as potential antioxidants: A systematic review. J. Agric Food Chem. 2015;63(14):3615–3626. doi: https://doi.org/10.1021/jf506326t.CrossRefPubMedGoogle Scholar
  33. Ng SC, Harf AL, Kamm MA, Stagg AJ, Knight SC. Mechanism of action on probiotics: recent advances. Inflamm Bowel Dis. 2009;15(2):300–310. doi: https://doi.org/10.1002/ibd.20602.CrossRefPubMedGoogle Scholar
  34. Nicolson GL, de Mattos GF, Settineri R, Costa C, Ellithorpe R et al. Clinical effects of hydrogen administration: from animal and human diseases to exercise medicine. Intern J Clin Medicine. 2016;7(1):32–76. doi: https://doi.org/10.4236/ijcm.2016.71005.CrossRefGoogle Scholar
  35. Norris V, Verrier C, Feuilloley M. Hybolites Revisited. Recent Pat on Anti-Infect Drug Discov. 2016;11(1):1–13.CrossRefGoogle Scholar
  36. Oleskin AV, El’-Registan GI, Shenderov BA. Role of neuromediators in the functioning of the human microbiota: «business talks» among microorganisms and the microbiota-host dialogue. Microbiology. 2016;85(1):1–22.CrossRefGoogle Scholar
  37. Oleskin AV, Shenderov BA, Rogovsky VS. Role of Neurochemicals in the Interaction between the Microbiota and the Immune and the Nervous System of the Host Organism. Probiotics and Antimicrobial Proteins. 2017;9(3):215–234. doi: https://doi.org/10.1007/s12602-017-9262-1.CrossRefPubMedGoogle Scholar
  38. Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health Dis. 2016;27:30971. doi: https://doi.org/10.3402/mehd.v27.30971.CrossRefPubMedGoogle Scholar
  39. Proal AD, Lindseth IA, Marshall TG. Microbe-Microbe and Host-Microbe Interactions Drive Microbiome Dysbiosis and Inflammatory Processes. Discovery Medicine. 2017;23(124):51–60.PubMedGoogle Scholar
  40. Prosekov A, Dyshlyuk L, Milentyeva I, Sukhish S, Babich O et al. Antioxidant, antimicrobial and antitumor activity of bacteria of the genus Bifidobacterium, selected from the gastrointestinal tract of human. Integr Mol Med. 2015;2(5):295–303.Google Scholar
  41. Remely M, Lovrecic L, de la Garza AL, Migliore L, Peterlin B et al. Therapeutic perspectives of epigenetically active nutrients. British J Pharmacol. 2015;172(11):2756–2768. doi: https://doi.org/10.1111/bph.12854.CrossRefGoogle Scholar
  42. Roda A, Simoni P, Magliulo M, Nanni P, Baraidini M et al. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon. World J Gastroenterol. 2007;13(7):1079–1084. doi: https://doi.org/10.3748/wjg.v13.i7.1079.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res. 2013;57(3):523–535. doi: https://doi.org/10.1002/mnfr.201200594.CrossRefPubMedGoogle Scholar
  44. Said HM. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol. 2013;305(9):G601–610. doi: https://doi.org/10.1152/ajpgi.00231.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sanshez S, Demain AL. Antibiotics: Current Innovations and Future Trends. Caister Academic Press; 2015.Google Scholar
  46. Savidge TC. Epigenetic Regulation of Enteric Neurotransmission by Gut Bacteria. Front Cell Neurosci. 2015;9:503. doi: https://doi.org/10.3389/fncel.2015.00503.CrossRefPubMedGoogle Scholar
  47. Schauder S, Bassler BL. The languages of bacteria. Genes Dev. 2001;15(12):1468–1480.CrossRefGoogle Scholar
  48. Sharma M, Shukla G. Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Front. Microbiol. 2016;7:1940. doi: https://doi.org/10.3389/fmicb.2016.01940.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shenderov BA, Aleshkin VA. Functional Dairy Foods in Human Epigenetic Regulation. In: Abstract Book IDF WORLD DAIRY SUMMIT. 4–8 November 2012. Cape Town. Poster 0121.Google Scholar
  50. Shenderov BA, Gakhova EN, Kaurova SA, Uteshev VK, Shishova NV. Cryobanks of natural symbiotic microbiocenosis and their importance in medicine and biotechnology. Biophysics of live cell. 2014;10:221–223 (in Russian).Google Scholar
  51. Shenderov BA, Manvelova MA, Gahova EN, Piorunski DA. Functional food and cryobanks of microbiocenoses-practical applications of gnotobiology in the 21st century. In: Hashimoto K et al, editors. Germfree life and its ramifications. Japan: Shiozawa; 1996. p. 533–536.Google Scholar
  52. Shenderov BA, Midtvedt T. Epigenomic programing: a future way to health? Microb Ecol Health Dis. 2014;25:24145. doi: https://doi.org/10.3402/mehd.v25.24145.CrossRefGoogle Scholar
  53. Shenderov BA. Functional food, cryobanks of microbial associations and their role in the preservation and restoration of health. Journal of Restorative Medicine & Rehabilitation. 2003;3:29–31 (in Russian).Google Scholar
  54. Shenderov BA. Metabiotics — novel prophylactic technology of diseases associated with microecological imbalance of human being. Journal of Restorative Medicine & Rehabilitation. 2017;4:40–49 (in Russian).Google Scholar
  55. Shenderov BA. Modern Condition and Prospective Host Microecology Investigations. Microb Ecol Heath Dis. 2007;19(3):145–149. doi: https://doi.org/10.1080/08910600701520933.CrossRefGoogle Scholar
  56. Shenderov BA. Probiotic (symbiotic) bacterial languages. Anaerobe. 2011a;17(6):490–495. doi: https://doi.org/10.1016/j.anaerobe.2011.05.009.CrossRefGoogle Scholar
  57. Shenderov BA. Role of mitochondria in preventive, restorative and sport medicine. Journal of Restorative Medicine & Rehabilitation. 2018;1:21–31 (in Russian).Google Scholar
  58. Singh A, Vishwakarma V, Singhal B. Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities — Metabiotics: Probiotics Effector Molecules. Advan Biosci Biotechnol. 2018;9(4):147–189. doi: https://doi.org/10.4236/abb.2018.94012.CrossRefGoogle Scholar
  59. Suvorov A, Karaseva A, Kotyleva M, Kondratenko Y, Lavrenova H et al. Autoprobiotics as an approach for restoration of personalized microbiota. Front Microbiol. 2018;9:1869. doi: https://doi.org/10.3389/fmicb.2018.01869.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Thellier M, Legent G, Amar P, Norris V, Ripoll C. Steady-state kinetic behavior of functioning-dependent structures. The FEBS journal. 2006;273(18):4287–4299. doi: https://doi.org/10.1111/j.1742-4658.2006.05425.x.CrossRefPubMedGoogle Scholar
  61. Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB. Manipulation of the Quorum-Sensing Signal AI-2 Affects the Antibiotic-Treated Gut Microbiota. Cell Reports. 2015;10(11):1861–71. doi: https://doi.org/10.1016/j.celrep.2015.02.049.CrossRefPubMedGoogle Scholar
  62. Vakhitov TYa, Petrov LN, Bondarenko VM. The concept of a probiotic drug containing original microbial metabolites. Zh Mikrobiol (Moscow). 2005; 5:108–114 (in Russian).Google Scholar
  63. Venema K, do Carmo AP. Probiotic and Prebiotics: Current Research and Future Trends. Wageningen: Caiser Academic Press; 2015. doi: https://doi.org/10.21775/9781910190098.
  64. Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In vitro and In vivo. Front Neurosci. 2017;11:183. doi: https://doi.org/10.3389/fnins.2017.00183.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Volkov MYu, Tkachenko EI, Vorobeichikov EV, Sinitsa AV. Bacillus subtilis metabolites as a novel promising probiotic preparations. Zh Mikrobiol (Moscow). 2007;2:75–80 (in Russian).Google Scholar
  66. Wallace BD, Redinbo MT. The Human Microbiome is a Source of Therapeutic Drug Targets. Curr Opin Chem Biol. 2013;17(3):379–384. doi: https://doi.org/10.1016/j.cbpa.2013.04.011.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wallace DC. The epigenome and the mitochondrion: bioenergetics and the environment. Gen Dev. 2010;24(15):1571–1573. doi: https://doi.org/10.1101/gad.1960210.CrossRefGoogle Scholar
  68. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565–569. doi: https://doi.org/10.1126/science.aad3369.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Boris A. Shenderov
    • 1
  • Alexander V. Sinitsa
    • 2
  • Mikhail M. Zakharchenko
    • 2
  • Christine Lang
    • 3
  1. 1.Research Laboratory for Design & Implementation of Personalized Nutrition-Related Product & DietsK.G. Razumovsky University of Technology & ManagementMoscowRussia
  2. 2.Kraft Ltd.St. PetersburgRussia
  3. 3.MBCC GroupBerlinGermany

Personalised recommendations