Durum Wheat Storage Protein Composition and the Role of LMW-GS in Quality

  • Patricia GiraldoEmail author
  • Magdalena Ruiz
  • M. Itria Ibba
  • Craig F. Morris
  • Maryke T. Labuschagne
  • Gilberto Igrejas


Durum wheat (Triticum turgidum L. var. durum (Desf.) Husn., a tetraploid species, is an important staple food mainly used for pasta and bread making in Europe and North Africa. It represents only approximately 8% of wheat production worldwide, 90% of which is produced in the Mediterranean region (Ammar et al. 2000). It is widely accepted that durum wheat was introduced into North Africa and the Iberian Peninsula from the south of Italy (MacKey 2005). However, recent findings based on the genetic similarities between landraces from the Maghreb countries and those from Spain and Portugal have suggested North Africa was an additional route for the introduction of wheat into the Iberian Peninsula (Moragues et al. 2006, 2007).


Durum wheat Prolamins Low molecular weight glutenins (LMW-GS) Proteomics Molecular markers End-use quality 


  1. Abecassis J, Cuq B, Boggini G, Namoune H (2012) Other traditional durum-derived products. In: Sissons MJ, Carcea M, Marchylo M, Abecassis J (eds) Durum wheat chemistry and technology. 2nd edn, AACC International, St. Paul, MN, p. 177–199.Google Scholar
  2. Aguiriano E, Ruiz M, Fité R, Carrillo JM (2008) Genetic variation for glutenin and gliadins associated with quality in durum wheat (Triticum turgidum L. ssp. turgidum) landraces from Spain. Spanish Journal of Agricultural Research 6: 599–609.CrossRefGoogle Scholar
  3. Aguiriano E. Ruiz M, Fité R, Carrillo JM (2009) Effects of N fertilisation, year and prolamin alleles on gluten quality in durum wheat (Triticum turgidum L. ssp. turgidum) landraces from Spain. Spanish Journal of Agricultural Research 7: 342–348.CrossRefGoogle Scholar
  4. Amiour N, Merlino M, Leroy P, Branlard G (2002) Proteomic analysis of amphiphilic proteins of hexaploid wheat kernels. Proteomics 2: 632–641.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ammar K, Kronstad WE, Morris CF (2000) Breadmaking quality of selected durum wheat genotypes and its relationship with high molecular weight glutenin subunits allelic variation and gluten protein polymeric composition. Cereal Chemistry 77: 230–236.CrossRefGoogle Scholar
  6. An X, Zhang Q, Yan Y, Li Q, Zhang Y, Wang A et al.(2006) Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theoretical and Applied Genetics 113: 383–395.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N et al. (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191.Google Scholar
  8. Babay E, Hanana M, Mzid R, Slim-Amara H, Carrillo JM, Rodríguez-Quijano, M (2015) Influence of allelic prolamin variation and localities on durum wheat quality. Journal of Cereal Science 63: 27–34.CrossRefGoogle Scholar
  9. Bean SR, Lookhart GL (2000) Electrophoresis of cereal storage proteins. Journal of chromatography A 88: 23–36.CrossRefGoogle Scholar
  10. Bellil I, Hamdi O, Khelifi D (2014) Diversity of five glutenin loci within durum wheat (Triticum turgidum L. ssp. durum (Desf.) Husn.) germplasm grown in Algeria. Plant Breeding 133: 179–183.CrossRefGoogle Scholar
  11. Benmoussa M, Vezina L, Pagé M, Yelle S, Laberge S (2000) Genetic polymorphism in low-molecular-weight glutenin genes from Triticum aestivum, variety Chinese Spring. Theoretical and Applied Genetics 100: 789–793.CrossRefGoogle Scholar
  12. Beom H, Kim JS, Jang Y, Lim SH, Kim CK, Lee CK et al. (2018) Proteomic analysis of low-molecular-weight glutenin subunits and relationship with their genes in a common wheat variety. 3 Biotech 8: 56.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bernardo A, Wang S, Amand PS, Bai G (2015) Using next generation sequencing for multiplexed trait-linked markers in wheat. PloS one 10: e0143890.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bietz JA, Wall JS (1972) Wheat gluten subunits: Molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cereal Chemi stry 49: 416–430.Google Scholar
  15. Blanco A, Bellomo MP, Lotti C, Maniglio T, Pasqualone A, Simeone R et al. (1998) Genetic mapping of sedimentation volume across environments using recombinant inbred lines of durum wheat. Plant Breed 117: 413–417.CrossRefGoogle Scholar
  16. Boggini G, Pogna NE (1989) The breadmaking quality and storage protein composition of Italian durum wheat. Journal of Cereal Science 9: 131–138.CrossRefGoogle Scholar
  17. Boggini G, Tusa P, Pogna NE (1994) Bread-making quality of durum wheat genotypes with atypical protein compositions. Tecnica molitoria, 42: 825–835.Google Scholar
  18. Branlard G, Khelifi D, Lookhart G (1992) Identification of some wheat proteins separated by a two-step acid polyacrylamide gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique. Cereal chemistry (USA).Google Scholar
  19. Branlard G, Bancel E (2007) Protein extraction from cereal seeds. In: Anonymous Plant Proteomics Springer, p. 15–25.Google Scholar
  20. Branlard G, Picard B, Courvoisier C (1990) Electrophoresis of gliadins in long acrylamide gels: method and nomenclature. Electrophoresis 11: 310–314.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Branlard G, Rousset M (1987) Intérêt de l’analyse des protéines de réserve dans l’amélioration génétique du blé. Le Sélectionneur Français, 39:19–30.Google Scholar
  22. Brites C, Carrillo JM (2000) Inheritance of gliadin and glutenin proteins in four durum wheat crosses. Cereal Research Communications 239–246.Google Scholar
  23. Brites C, Carrillo JM (2001) Influence of high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal Chemistry 78(1): 59–63.CrossRefGoogle Scholar
  24. Burnouf T, Bietz JA (1984) Reversed-phase high-performance liquid chromatography of durum wheat gliadins: Relationships to durum wheat quality. Journal of Cereal Science 2:.Google Scholar
  25. Bushuk W (1981) Utilization of cereal proteins. Utilization of Protein Resources: 208–226.Google Scholar
  26. Bushuk W, Zillman RR (1978) Wheat cultivar identification by gliadin electrophoregrams. I. Apparatus, method and nomenclature. Canadian Journal of Plant Science 58: 505–515.CrossRefGoogle Scholar
  27. Butow BJ, Gale KR, Ikea J, Juhasz A, Bedö Z, Tamas L et al. (2004) Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theoretical and Applied Genetics 109: 1525–1535.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Butow BJ, Ma W, Gale KR, Cornish GB, Rampling L, Larroque O et al. (2003) Molecular discrimination of Bx7 alleles demonstrates that over expression has a major impact on wheat flour dough strength. Theoretical and Applied Genetics 107: 1524–1532.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Campbell KG, Finney PL, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ et al. (2001) Quantitative trait loci associated with milling and baking quality in a soft× hard wheat cross. Crop Science 41: 1275–1285.CrossRefGoogle Scholar
  30. Capriotti AL, Cavaliere C, Foglia P, Samperi R, Lagana A (2011) Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics. Journal of Chromatography A 1218: 8760–8776.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Carrillo JM, Martínez MC, Brites C, Nieto-Taladriz MT, Vázquez JF (2000) Relationship between endosperm proteins and quality in durum wheat (Triticum turgidum L. var. durum). Options mediterraneennes 40: 463–467.Google Scholar
  32. Carrillo JM, Vazquez JF, Orellana J (1990) Relationship between gluten strength and glutenin proteins in durum wheat cultivars. Plant Breeding 104: 325–333.CrossRefGoogle Scholar
  33. Carrillo JM, Vazquez JF, Ruiz M, Albuquerque MM (1991) Relationships between gluten strength and gluten components in Spanish durum wheat landraces. In Proc. IV Intnl. Workshop on Gluten proteins. St Paul, Minnesota, USA, June (pp. 27–29).Google Scholar
  34. Cassidy BG, Dvorak J, Anderson OD (1998) The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theoretical and Applied Genetics 96: 743–750.CrossRefGoogle Scholar
  35. Cassidy BG, Dvorak J (1991) Molecular characterization of a low-molecular-weight glutenin cDNA clone from Triticum durum. Theoretical and Applied Genetics 81: 653–660.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S et al. (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the national academy of sciences 110: 8057–8062.CrossRefGoogle Scholar
  37. Cheftel JC, Cuq, J-L, Lorient D (1985) Les protéines de blé. In: Protéines alimentaires. Biochimie, propriétés fonctionnelles, valeur nutriotionelle- Modifications chimiques. Technique et Documentation Lavoisier, Paris, France, p. 204–222.Google Scholar
  38. Chevalier F, Martin O, Rofidal V Devauchelle AD, Barteau S, Sommerer N et al. (2004) Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics 4: 1372–1381.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ciaffi M, Benedettelli S, Giorgi B, Porceddu E, Lafiandra D (1991) Seed storage proteins of Triticum turgidum ssp. dicoccoides and their effect on the technological quality in durum wheat. Plant Breeding 107: 309–319.CrossRefGoogle Scholar
  40. Ciaffi M, Lafiandra D, Turchetta T, Ravaglia S, Barian H, Gupta R et al. (1995) Breadbaking potential of durum wheat lines expressing both x-and y-type subunits at the Glu-A1 locus. Cereal Chemistry (USA).Google Scholar
  41. Ciaffi M, Lee YK, Tamás L, Gupta R, Skerritt J, Appels R (1999) The low-molecular-weight glutenin subunit proteins of primitive wheats. III. The genes from D-genome species. Theoretical and Applied Genetics 98: 135–148.CrossRefGoogle Scholar
  42. Clarke FR, Clarke JM, Pozniak CJ, Knox RE, McCaig TN (2009) Protein concentration inheritance and selection in durum wheat. Canadian journal of plant science 89: 601–612.CrossRefGoogle Scholar
  43. Clarke JM, Marchylo BA, Kovacs M, Noll JS, McCaig TN, Howes NK (1998) Breeding durum wheat for pasta quality in Canada. Euphytica 100: 163–170.CrossRefGoogle Scholar
  44. Colasuonno P, Gadaleta A, Giancaspro A, Nigro D, Giove S, Incerti O et al. (2014) Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Molecular Breeding 34: 1563–1578.CrossRefGoogle Scholar
  45. Colasuonno P, Maria MA, Blanco A, Gadaleta A (2013) Description of durum wheat linkage map and comparative sequence analysis of wheat mapped DArT markers with rice and Brachypodium genomes. BMC genetics 14: 114.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Cunsolo V, Foti S, Saletti R, Gilbert S, Tatham AS, Shewry PR (2003) Structural studies of glutenin subunits 1Dy10 and 1Dy12 by matrix-assisted laser desorption/ionisation mass spectrometry and high-performance liquid chromatography/electrospray ionisation mass spectrometry. Rapid Communication Mass Spectrometry 17: 442–454.CrossRefGoogle Scholar
  47. Cunsolo V, Foti S, Saletti R, Gilbert S, Tatham AS, Shewry PR (2004) Structural studies of the allelic wheat glutenin subunits 1Bx7 and 1Bx20 by matrix-assisted laser desorption/ionization mass spectrometry and high-performance liquid chromatography/electrospray ionization mass spectrometry. Journal of Mass Spectrometry 39: 66–78.CrossRefGoogle Scholar
  48. Damidaux R, Autran JC, Grignac P, Feillet, P (1978) Mise en évidence de relations applicable en sélection entre électrophorégramme des gliadines et les propriétés viscoélastiques du gluten du Triticum durum Desf. CR Acad Sc Paris, Série D 287:701–704.Google Scholar
  49. De Santis MA, Giuliani MM, Giuzio L, De Vita P, Lovegrove A, Shewry PR et al. (2017) Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. European Journal of Agronomy 87: 19–29.CrossRefPubMedPubMedCentralGoogle Scholar
  50. De Vita P, Nicosia O, Nigro F, Platani C, Riefolo C, Di Fonzo N et al. (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. European Journal of Agronomy, 26: 39–53.CrossRefGoogle Scholar
  51. Dexter JE (2008) The history of durum wheat breeding in Canada and summaries of recent research at the Canadian Grain Commission on factors associated with durum wheat processing. In Bosphorus 2008 ICC (International Cereal Congress).Google Scholar
  52. Di Stefano V, Avellone G, Bongiorno D, Cunsolo V, Muccilli V, Sforza S et al. (2012) Applications of liquid chromatography-mass spectrometry for food analysis. Journal of Chromatography A 1259: 74–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Dong K, Hao CY, Wang AL, Cai M, Yan Y (2009) Characterization of HMW glutenin subunits in bread and tetraploid wheats by reversed-phase high-performance liquid chromatography. Cereal Research Communications 37: 65–73.Google Scholar
  54. Dong L, Zhang X, Liu D, Fan H, Sun J, Zhang Z et al. (2010) New insights into the organization, recombination, expression and functional mechanism of low molecular weight glutenin subunit genes in bread wheat. PLoS One 5: e13548.CrossRefPubMedPubMedCentralGoogle Scholar
  55. D’Ovidio R, Lafiandra D, Porceddu E (1996) Identification and molecular characterization of a large insertion within the repetitive domain of a high-molecular-weight glutenin subunit gene from hexaploid wheat. Theoretical and Applied Genetics 93: 1048–1053.CrossRefPubMedPubMedCentralGoogle Scholar
  56. D’Ovidio R, Masci S, Porceddu E (1995) Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theoretical and Applied Genetics 91: 189–194.CrossRefPubMedPubMedCentralGoogle Scholar
  57. D’Ovidio R, Porceddu E, Lafiandra D (1994) PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-D1 locus. Theoretical and Applied Genetics 88: 175–180.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Dreisigacker S, Sehgal D, Reyes Jaimez AE, Luna-Garrido B, Muñoz-Zavala S, Núñez-RíosC et al. (eds) (2016) CIMMYT Wheat Molecular Genetics: Laboratory Protocols and Applications to Wheat Breeding. Mexico, DF: CIMMYT.Google Scholar
  59. du Cros DL, Joppa LR, Wrigley CW (1983) Two-dimensional analysis of gliadin proteinsassociated with quality in durum wheat: chromosomal location of genes for their synthesis. Theoretical and Applied Genetics 66: 297–302.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Du Cros DL (1987) Glutenin proteins and gluten strength in durum wheat. Journal of Cereal Science 5: 3–12.CrossRefGoogle Scholar
  61. Dunbar BD, Bundman DS, Dunbar BS (1985) Identification of cultivar specific proteins of winter wheat (T. aestivum L.) by high resolution two dimensional polyacrylamide gel electrophoresis and color-based silver stain. Electrophoresis 6: 39–43.CrossRefGoogle Scholar
  62. Dunn MJ (2000) From Genome to Proteome. Wiley, London.Google Scholar
  63. Dupont FM, Vensel WH, Tanaka CK, Hurkman WJ, Altenbach SB (2011) Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Science 9: 10.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Dworschak RG, Ens W, Standing KG, Preston KR, Marchylo BA, Nightingale MJ et al. (1998) Analysis of Wheat Gluten Proteins by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Journal of Mass Spectrometry, 33: 429–435.CrossRefGoogle Scholar
  65. Edwards NM, Mulvaney SJ, Scanlon MG, Dexter JE (2003) Role of gluten and its components in determining durum semolina dough viscoelastic properties. Cereal Chemistry 80: 755–763.CrossRefGoogle Scholar
  66. Edwards NM, Gianibelli MC, McCaig TN, Dexter JE (2007) Relationships between dough strength, polymeric protein quantity and composition for diverse durum wheat genotypes. Journal of Cereal Science 45: 140–149.CrossRefGoogle Scholar
  67. Espí A, Giraldo P, Rodríguez-Quijano M, Carrillo JM (2012) A PCR-based method for discriminating between high molecular weight glutenin subunits Bx7 and Bx7∗ in Triticum aestivum L. Plant Breeding 131: 571–573.CrossRefGoogle Scholar
  68. Espí A, Rodríguez-Quijano M, Vázquez JF, Carrilo JM (2014) Molecular characterization of Glu-B3 locus in wheat cultivars and segregating populations. Journal of Cereal Science 60: 374–381.CrossRefGoogle Scholar
  69. Fekete S, Fekete J, Ganzler K (2009) Validated UPLC method for the fast and sensitive determination of steroid residues in support of cleaning validation in formulation area. Journal of Pharmacology and Biomedical Analysis 49: 833–838.CrossRefGoogle Scholar
  70. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64–71.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Fiedler JD, Salsman E, Liu Y, Michalak de Jimenez M, Hegstad JB, Chen B et al. (2017) Genome-Wide Association and Prediction of Grain and Semolina Quality Traits in Durum Wheat Breeding Populations. Plant Genome 10: 10.CrossRefGoogle Scholar
  72. Fois S, Schlichting L, Marchylo B, Dexter J, Motzo R, Giunta F (2011) Environmental conditions affect semolina quality in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different gluten strength and gluten protein composition. Journal of the Science of Food and Agriculture 91: 2664–2673.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Gao L, Ma W, Chen J, Wang K, Li J, Wang S et al. (2010) Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. Journal of Agricultural and Food Chemistry 58: 2777–2786.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Garozzo D, Cozzolino R, Giorgi SD, Fisichella S, Lafiandra D (1999) Use of hydroxyacetophenones as matrices for the analysis of high molecular weight glutenin mixtures by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry 13: 2084–2089.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Gianibelli MC, Ruiz M, Carrillo JM, MacRitchie F (1995) Relationships between biochemical parameters and quality characteristics of durum wheats. In: Schofield JD (ed) Wheat Structure, Biochemistry and Functionality. Royal Society of Chemistry, Cambridge, p. 146–152.CrossRefGoogle Scholar
  76. Giraldo P, Rodríguez-Quijano M, Simon C, Carrillo JM (2010) Allelic variation in HMW glutenins in Spanish wheat landraces and their relationship with bread quality. Spanish Journal of Agricultural Research 8: 1012–1023.CrossRefGoogle Scholar
  77. Gobaa S, Bancel E, Kleijer G, Stamp P, Branlard G (2007) Effect of the 1BL. 1RS translocation on the wheat endosperm, as revealed by proteomic analysis. Proteomics 7:4349–4357.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Görg A, Klaus A, Lück C et al. (2007) Two-dimensional electrophoresis with immobilized pH gradients for proteome analysis. A laboratory manual. Scholar
  79. Gupta RB, Shepherd KW (1988) Low-molecular-weight glutenin subunits in wheat: their variation, inheritance and association with bread-making quality. In Proc. 7th International Wheat Genetics Symposium. T.E. Miller e R.M.D. Koebner (eds.). Cambridge, Vol. II, p. 943–949.Google Scholar
  80. Gupta RB, Shepherd KW (1993) Production of multiple wheat-rye 1RS translocation stocks and genetic analysis of LMW subunits of glutenin and gliadins in wheats using these stocks. Theoretical and Applied Genetics 85: 719–728.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Haile JK, N’Diaye A, Clarke F, Clarke J, Knox R, Rutkoski J et al. (2018) Genomic selection for grain yield and quality traits in durum wheat. Molecular Breeding 38: 75.CrossRefGoogle Scholar
  82. Hailegiorgis D, Lee CA, Yun SJ (2017) Allelic composition and associated quality traits of the Glu-1 and Glu-3 loci in selected modern Ethiopian durum wheat varieties. Journal of Crop Science and Biotechnology 20: 387–392.CrossRefGoogle Scholar
  83. Henkrar F, El-Haddoury J, Iraqi D, Bendaou N, Udupa SM (2017) Allelic variation at high-molecular weight and low-molecular weight glutenin subunit genes in Moroccan bread wheat and durum wheat cultivars. 3 Biotech 7:1.Google Scholar
  84. Huebner FR, Bietz JA (1985) Detection of quality differences among wheats by high-performance liquid-chromatography. Journal of Chromatography 327: 333–342.Google Scholar
  85. Humphery-Smith I, Cordwell SJ, Blackstock WP (1997) Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18: 1217–1242.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ibba MI, Kiszonas AM, Morris CF (2017) Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 130: 891–902.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Ibba MI, Kiszonas AM, Morris CF (2018) Development of haplotype-specific molecular markers for the low-molecular-weight glutenin subunits. Molecular Breeding 38: 68.CrossRefGoogle Scholar
  88. Igrejas G, Guedes-Pinto H, Carnide V, Branlard G(1999) The high and low molecular weight glutenin subunits and ω-gliadin composition of bread and durum wheats commonly grown in Portugal. Plant Breeding 118: 297–302.CrossRefGoogle Scholar
  89. Igrejas G, Juhász A, Gianibelli MC, Gale KR, Rahman S (2009) Low-molecular-weight glutenins in durum wheat: analysis of Glu-A3 alleles using PCR markers. Plant Breeding 129: 574–577.Google Scholar
  90. Ikeda TM, Nagamine T, Fukuoka H, Yano H (2002) Identification of new low-molecular-weight glutenin subunit genes in wheat. Theoretical and Applied Genetics 104: 680–687.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Islam N, Tsujimoto H, Hirano H (2003a) Wheat proteomics: relationship between fine chromosome deletion and protein expression. Proteomics 3: 307–316.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Islam N, Tsujimoto H, Hirano H (2003b) Proteome analysis of diploid, tetraploid and hexaploid wheat: towards understanding genome interaction in protein expression. Proteomics 3: 549–557.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Islam N, Woo SH, Tsujimoto H, Kawasaki H, Hirano H (2002) Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat. Proteomics 2: 1146–1155.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Jackson EA, Holt LM, Payne PI (1983). Characterisation of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localisation of their controlling genes. Theoretical and Applied Genetics 66: 29–37.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Jackson EA, Morel MH, Sontag-Strohm T, Branlard G, Metakovsky EV, Redaelli R (1996) Proposal for combining the classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.). Journal of Genetics and Breeding 50: 321–336.Google Scholar
  96. Janni M, Cadonici S, Pignone D, Marmiroli N (2017) Survey and new insights in the application of PCR based molecular markers for identification of HMW-GS at the Glu-B1 locus in durum and bread wheat. Plant Breeding 136: 467–473.CrossRefGoogle Scholar
  97. Jones RW, Taylor NW, Senti FR (1959) Electrophoresis and fractionation of wheat gluten. Archives. Biochemistry Biophysics 84: 363–376.CrossRefGoogle Scholar
  98. Joppa LR, Khan K, Williams ND (1983) Chromosomal location of genes for gliadin polypeptides in durum wheat Triticum turgidum L. Theoreticaland Applied Genetics 64: 289–293.CrossRefGoogle Scholar
  99. Kaan F, Branlard G, Chihab B, Borries C (1993) Relations between genes coding for grain storage protein and two pasta cooking quality criteria among durum wheat (T. durum Desf.) genetic resources. Journal of Genetics Breeding, 47: 151–156.Google Scholar
  100. Kelleher NL, Lin HY, Valaskovic GA, Aaserud DJ, Fridriksson EK, McLafferty FW (1999) Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. Journal of the American Chemical Society 121: 806–812.CrossRefGoogle Scholar
  101. Khelifi D, Branlard G (1991) A new two-step electrophoresis method for analysing gliadin polypeptides and high and low molecular weight subunits of glutenin of wheat. Journal of Cereal Science 13: 41–47.CrossRefGoogle Scholar
  102. Kiszonas AM, Morris CF (2018) Wheat breeding for quality: A historical review. Cereal Chemistry 95: 17–34.Google Scholar
  103. Klose J (1975) Protein mapping by combined isoelectric focussing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243.PubMedPubMedCentralGoogle Scholar
  104. Kovacs MIP, Dahlke G, Noll JS (1994) Gluten viscoelasticity: its usefulness in the Canadian durum wheat breeding program. Journal of Cereal Science 19: 251–257.CrossRefGoogle Scholar
  105. Kovacs MIP, Howes NK, Leisle D, Zawistowski J (1995). Effect of two different low molecular weight glutenin subunits on durum wheat pasta quality parameters. Cereal Chemistry 72: 85–87.Google Scholar
  106. Kreis M, Shewry PR, Forde BG, Miflin BJ (1985) Structure and evolution of seed storage proteins and their genes with particular reference to those of wheat, barley and rye. In Oxford Surveys of Plant Cell and Molecular Biology. B.J. Miflin (ed.). Oxford Univ. Press, Oxford, Vol. II, p. 253–317.Google Scholar
  107. Kumar LS (1999) DNA markers in plant improvement: an overview. Biotechnology Advances 17: 143 182.Google Scholar
  108. Kussmann M, Nordhoff E, Rahbek-Nielsen H, Haebel S, Rossel-Larsen M, Jakobsen L (1997) Matrix assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. Journal of Mass Spectrometry 32: 593–601.CrossRefGoogle Scholar
  109. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Lafiandra D, Tucci GF, Pavoni A, Turchetta T, Margiotta B (1997) PCR analysis of x-and y-type genes present at the complex Glu-A1 locus in durum and bread wheat. Theoretical and Applied Genetics 94: 235–240.CrossRefGoogle Scholar
  111. Laidò G, Mangini G, Taranto F, Gadaleta A, Blanco A, Cattivelli L, et al. (2013) Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated by SSR, DArT and pedigree data. PLoS ONE 8:e67280.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Lei ZS, Gale KR, He ZH, Gianibelli C, Larroque O, Xia XC (2006) Y-type gene specific markers for enhanced discrimination of high molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. Journal of Cereal Science 43: 94–101.CrossRefGoogle Scholar
  113. Lerner SE, Cogliatti M, Ponzio NR, Seghezzo ML, Molfes ER, Rogers WJ (2004) Genetic variation for grain protein components and industrial quality of durum wheat cultivars sown in Argentina. Journal of Cereal Science 40: 161–166.CrossRefGoogle Scholar
  114. Levy AA, Zaccai M, Millet E, Feldman M (1988) Utilization of wild emmer for the improvement of grain protein percentage of cultivated wheat. In Proceedings of the Seventh International Wheat Genetics Symposium/edited by TE Miller and RMD Koebner. Cambridge: Published by the Institute of Plant Science Research, Cambridge Laboratory, c1988.Google Scholar
  115. Liang X, Zhen S, Han C, Wang C, Li X, Ma W et al. (2015) Molecular characterization and marker development for hexaploid wheat-specific HMW glutenin subunit 1By18 gene. Molecular Breeding 35: 1–16.CrossRefGoogle Scholar
  116. Lindsay MP, Skerritt, JH (1999) The glutenin macropolymer of wheat flour doughs: structure–function perspectives. Trends in Food Science & Technology 10: 247–253.CrossRefGoogle Scholar
  117. Liu C-Y (1995) Identification of a new low Mr glutenin subunit locus on chromosome 1B of durum wheat. Journal of Cereal Science 21: 209–213.CrossRefGoogle Scholar
  118. Liu L, Ikeda TM, Branlard G, Peña RJ, Rogers WJ, Lerner SE et al. (2010) Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat. BMC Plant Biology 10: 124.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Liu C-Y, Shepherd KW (1995) Inheritance of B subunits of glutenin and ω- and γ-gliadins in tetraploid wheats. Theoretical and Applied Genetics 90: 149–1157.CrossRefGoogle Scholar
  120. Liu L, Wang AL, Appels A (2009) A MALDI-TOF based analysis of high molecular weight glutenin subunits for wheat breeding. Journal of Cereal Science 50(2): 295–301.CrossRefGoogle Scholar
  121. Liu S, Chao S, Anderson JA (2008) New DNA markers for high molecular weight glutenin subunits in wheat. Theoretical and Applied Genetics 118: 177–183.Google Scholar
  122. Lutz E, Wieser H, Koehler P (2012) Identification of disulfide bonds in wheat gluten proteins by means of mass spectrometry/electron transfer dissociation. Journal of Agricultural and Food Chemistry 60: 3708–3716.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Ma W, Zhang W, Gale KR (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134: 51–60.CrossRefGoogle Scholar
  124. Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M et al (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nature genetics 51: 885–895.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL et al. (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnology Journal 13: 648–663.Google Scholar
  126. MacKey J (2005) Wheat: its concept, evolution, and taxonomy. In: Royo C, Nachit MM, Di Fonzo N, Araus JL, Pfeiffer WH, Slafer GA (eds) Durum wheat breeding: current approaches and future strategies. Food Products Press, New York, p. 3–61.Google Scholar
  127. McLafferty FW (2011) A Century of Progress in Molecular Mass Spectrometry. Annual Review of Analytical Chemistry 44: −22.Google Scholar
  128. MacRitchie F (1992) Physicochemical properties of wheat proteins in relation to functionality. Advances in Food and Nutrition Research 36: 1–87.CrossRefGoogle Scholar
  129. MacRitchie F, Du Cros DL, Wrigley CW (1990) Flour polypeptides related to wheat quality. In Advances in Cereal Science and Technology. Y. Pomeranz (ed.). American Association Cereal Chemists, St. Paul, Minnesota, USA, Vol. X, p. 79–145.Google Scholar
  130. Magallanes-López AM, Ammar K, Morales-Dorantes A, González-Santoyo H. Crossa J, Guzmán C (2017) Grain quality traits of commercial durum wheat varieties and their relationships with drought stress and glutenins composition. Journal of Cereal Science 75: 1–9.CrossRefGoogle Scholar
  131. Mamone G, Ferranti P, Chianese L, Scafuri L, Addeo F (2000) Qualitative and quantitative analysis of wheat gluten proteins by liquid chromatography and electrospray mass spectrometry. Rapid Communications in Mass Spectrometry 14: 897–904.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Mamone G, Picariello G, Caira S, Addeo F, Ferranti P (2009) Analysis of food proteins and peptides by mass spectrometry-based techniques. Journal of Chromatography 1216: 7130–7142.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Manifesto MM, Feingold S, Hopp HE, Schlatter AR, Dubcovsky J (1998) Molecular markers associated with differences in bread-making quality in a cross between bread wheat cultivars with the same high Mr glutenins. Journal of Cereal Science 27: 217–227.CrossRefGoogle Scholar
  134. Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P (2008) An integrated DArT-SSR linkage map of durum wheat. Molecular Breeding 22: 629–648.CrossRefGoogle Scholar
  135. Marchylo BA, Dexter JE, Clarke JM, Ames N (1998) Effects of protein content on CWAD quality. In: Fowler DB, Geddes WE, Johnston AM, Preston KR (eds) Proc. Symp. on Wheat Protein and Marketing. University Extension Press, University of Saskatchewan, Saskatoon, p 53–62.Google Scholar
  136. Marchylo BA, Kruger JE, Hatcher DW (1989) Quantitative reversed-phase high-performance liquid chromatographic analysis of wheat storage proteins as a potential quality prediction tool. Journal of Cereal Science 9: 113–130.CrossRefGoogle Scholar
  137. Martínez MC, Ruiz M, Carrillo JM (2004) New B low Mr glutenin subunit alleles at the Glu-A3, Glu-B2 and Glu-B3 loci and their relationship with gluten strength in durum wheat. Journal of Cereal Science 40: 101–107.CrossRefGoogle Scholar
  138. Martínez MC, Ruiz M, Carrillo JM (2005) Effects of different prolamin alleles on durum wheat quality properties. Journal of Cereal Science 41: 123–131.CrossRefGoogle Scholar
  139. Masci S, Lew EJL, Lafiandra D, Porceddu E, Kasarda DD (1995) Characterization of low-molecular-weight glutenin subunits in durum wheat by RP-HPLC and N-terminal sequencing. Cereal Chemistry 72: 100–104.Google Scholar
  140. Masci S, D’Ovidio R, Lafiandra D, Kasarda DD (1998) Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiology 118: 1147–1158.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Masci S, D’Ovidio R, Lafiandra D, Kasarda DD (2000) A 1B-coded low-molecular-weight glutenin subunit associated with quality in durum wheats shows strong similarity to a subunit present in some bread wheat cultivars. Theoretical and Applied Genetics 100: 396–400.CrossRefGoogle Scholar
  142. Mazza M, Lori A, Pasquini M, Pogna NE (1996) Evidence for omega-gliadins encoded by the Gli-B5 locus in durum wheat (Triticum turgidum spp. durum). Journal of Genetics & Breeding 50: 197–201.Google Scholar
  143. McIntosh RA, Yamazaki Y, Dubcovsky J, Morris CF, Appels R, Xia X et al. (2013) Catalogue of gene symbols for wheat.
  144. Mecham DK, Kasarda DD, Qualset CO (1978). Genetic aspects of wheat gliadin proteins. Biochemical Genetics 16: 831–853.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Melas V, Morel MH, Feille P (1993). Les sous-unites glutenines du ble de faible poids moleculaire: des proteines d’avenir? Industries des Cereales 3–3.Google Scholar
  146. Melas V, Morel MH, Autran J-C, Feillet P (1994) Simple and rapid method for purifying low molecular weight subunits of glutenin from wheat. Cereal Chemistry 71: 234–237.Google Scholar
  147. Metakovsky EV, Knežević D, Javornik B (1991) Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica 54: 285–295.Google Scholar
  148. Moragues M, Moralejo M, Sorrells ME, Royo C (2007) Dispersal of durum wheat landraces across the Mediterranean basin assessed by AFLPs and microsatellites. Genetic Resources and Crop Evolution 54: 1133–1144.CrossRefGoogle Scholar
  149. Moragues M, Zarco-Hernández J, Moralejo MA, Royo C (2006) Genetic diversity of glutenin protein subunits composition in durum wheat landraces [Triticum turgidum ssp. turgidum convar. durum (Desf.) MacKey] from the Mediterranean Basin. Genetic Resources and Crop Evolution 53: 993–1002.CrossRefGoogle Scholar
  150. Muccilli V, Cunsolo V, Saletti R, Foti S, Masci S, Lafiandra D (2005) Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix assisted laser desorption/ionization mass spectrometry. Proteomics 5: 719–728.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Muccilli V, Cunsolo V, Saletti R, Foti S, Masci S, Lafiandra D (2010). Characterisation of a specific class of typical low molecular weight glutenin subunits of durum wheat by a proteomic approach. Journal of Cereal Science 51: 134–139.CrossRefGoogle Scholar
  152. Muccilli V, Lo Bianco M, Cunsolo V, Saletti R, Gallo G, Foti S (2011) High molecular weight gluten in subunits in some durum wheat cultivars investigated by means of mass spectrometric techniques. Journal of Agriculture and Food Chemistry 59: 12226–12237.CrossRefGoogle Scholar
  153. Mullis KB, Erlich HA, Arnheim N, Horn GT, Saiki RK, Scharf S J (1987) Process for amplifying, detecting, and/or cloning nucleic acid sequences. U.S. Patent 4,683,195.Google Scholar
  154. Nazco R, Peña RJ, Ammar K, Villegas D, Crossa J, Royo C (2014) Durum wheat (Triticum durum desf.) Mediterranean landraces as sources of variability for allelic combinations at Glu-1/Glu-3 loci affecting gluten strength and pasta cooking quality. Genetic Resources and Crop Evolution 61: 1219–1236.CrossRefGoogle Scholar
  155. Nieto-Taladriz MT, Ruiz M, Martínez MC, Vazquez JF, Carrillo JM (1997) Variation and classification of B low-molecular-weight glutenin subunit alleles in durum wheat. Theoretical and Applied Genetics 95: 1155–1160.CrossRefGoogle Scholar
  156. Oak M, Tamhankar S, Rao V, Bhosale S (2004) Relationship of HMW, LMW glutenin subunits and γ-gliadins with gluten strength in Indian durum wheats. Journal of Plant Biochemistry and Biotechnology 13: 51–55.CrossRefGoogle Scholar
  157. O’Farrell PH (1975) High-resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250: 4007–4021.PubMedPubMedCentralGoogle Scholar
  158. Onda Y, Takahagi K, Shimizu, Inoue K, Mochida K (2018) Multiplex PCR targeted amplicon sequencing (MTA-Seq): simple, flexible, and versatile SNP genotyping by highly multiplexed PCR amplicon sequencing. Frontiers in Plant Science 9: 201.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Osborne TB (1907) The proteins of the wheat Kernel. Carnegie Inst. Washington. Washington D.C. Publ 84: 1–119.Google Scholar
  160. Osborne TB (1924) The Vegetable Proteins, 2nd edn. London.Google Scholar
  161. Park OK (2004) Proteomic studies in plants. Journal of Biochemistry and Molecular Biology 37: 133–138.PubMedPubMedCentralGoogle Scholar
  162. Payne PI, Law CN, Mudd EE (1980) Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theoretical and Applied Genetics 58: 113–120.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Payne PI (1987) Genetics of wheat storage protein and the effect of allelic variation on bread-making quality. Annual Review of Plant Physiology 38: 141–153.CrossRefGoogle Scholar
  164. Payne PI, Corfield KG (1979) Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta 145: 83–88.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Payne PI, Corfield KG, Blackman JA (1979) Identification of a high molecular weight subunit of glutenin whose presence correlates with breadmaking quality in six crosses of bread wheat. Theoretical and Applied Genetics 55: 153–159.CrossRefGoogle Scholar
  166. Payne PI, Holt LM, Jackson EA, Law CN (1984a). Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos. Trans. R. Soc., London, Ser. B, 304:359–371.Google Scholar
  167. Payne PI, Holt LM, Law CN (1981) Structural and genetical studies on the high-molecular weight subunits of wheat glutenin. Theoretical and Applied Genetics 60: 229–236.CrossRefPubMedPubMedCentralGoogle Scholar
  168. Payne PI, Jackson EA, Holt LM (1984b) The association between gamma-gliadin 45 and gluten strength in durum wheat varieties: a direct causal effect or the result of genetic linkage? Journal of Cereal Science 2: 73–81.CrossRefGoogle Scholar
  169. Pennington SR, Dunn MJ (eds.) (2001) Proteomics: From Protein Sequence to Function. BIOS Scientific Publishers, Oxford, UK, p 1–309.Google Scholar
  170. Peña RJ, Pfeiffer WH (2005) Breeding methodologies and strategies for durum wheat quality improvement. Durum Wheat Breeding: Current Approaches and Future Strategies. Food Product Press. The Haworth Press Inc., New York, 663–772.Google Scholar
  171. Pogna NE, Autran JC, Mellini F, Lafiandra D, Feillet P (1990) Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. Journal of Cereal Science 11: 15–34.CrossRefGoogle Scholar
  172. Pogna NE, Lafiandra D, Feillet P, Autran JC (1988) Evidence for a direct causal effect of low molecular weight subunits of glutenins on gluten viscoelasticity in durum wheats. Journal of Cereal Science 7: 11–214.CrossRefGoogle Scholar
  173. Porceddu E, Turchetta T, Masci S, D’Ovidio R., Lafiandra D, Kasarda DD et al. (1998) Variation in endosperm protein composition and technological quality properties in durum wheat. Euphytica 100: 197–205.CrossRefGoogle Scholar
  174. Qi PF, Wei YM, Ouellet T, Chen Q, Tan X, Zheng YL (2009) The γ-gliadin multigene family in common wheat (Triticum aestivum) and its closely related species. BMC Genomics 10: 168.CrossRefPubMedPubMedCentralGoogle Scholar
  175. Qian YW, Preston K, Krokhin O, Mellish J, Ens W (2008) Characterization of Wheat Gluten Proteins by HPLC and MALDI TOF Mass Spectrometry. Journal of the American Society for Mass Spectrometry 19: 1542–1550.CrossRefPubMedPubMedCentralGoogle Scholar
  176. Raciti CN, Doust MA, Lombardo GM, Boggini G, Pecetti L (2003) Characterization of durum wheat Mediterranean germplasm for high and low molecular weight glutenin subunits in relation with quality. European Journal of Agronomy 19: 373–382.CrossRefGoogle Scholar
  177. Radovanovic N, Cloutier S (2003) Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Molecular Breeding 12: 51–59.CrossRefGoogle Scholar
  178. Ragupathy R, Naeem HA, Reimer E, Lukow OM, Sapirstein HD, Cloutier S (2008) Evolutionary origin of the segmental duplication encompassing the wheat Glu-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theoretical and Applied Genetics 116: 283–296.CrossRefPubMedPubMedCentralGoogle Scholar
  179. Rasheed A, Xia X, Yan Y, Appels R, Mahmood T, He Z (2014) Wheat seed storage proteins: advances in molecular genetics, diversity and breeding applications. Journal of Cereal Science 60: 11–24.CrossRefGoogle Scholar
  180. Ribeiro M, Nunes-Miranda JD, Branlard G, Carrilllo JM, Rodriguez-Quijano M, Igrejas G (2013) One hundred years of grain omics: identifying the glutens that feed the world. Journal of Proteome Research 12: 4702–4716.CrossRefPubMedPubMedCentralGoogle Scholar
  181. Rife TW, Wu S, Bowden R et al. (2015) Spiked GBS: a unified, open platform for single marker genotyping and whole-genome profiling. BMC Genomics 16: 248.CrossRefPubMedPubMedCentralGoogle Scholar
  182. Rodríguez-Quijano M, Lucas R, Ruiz M, Giraldo P, Espi A, Carrillo JM (2010) Allelic variation and geographical patterns of prolamins in the USDA-ARS Khorasan wheat germplasm collection. Crop Science 50: 2383–2391.CrossRefGoogle Scholar
  183. Ruiz M, Carrillo JM (1993) Linkage relationships between prolamin genes on chromosomes 1A and 1B of durum wheat. Theoretical and Applied Genetics 87: 353–360.CrossRefPubMedPubMedCentralGoogle Scholar
  184. Ruiz M, Carrillo JM (1994) Separate effects on gluten strength of Gli-1 and Glu-3 prolamin genes on chromosomes 1A and 1B in durum wheat. Journal of Cereal Science 21:137–144.CrossRefGoogle Scholar
  185. Ruiz M, Carrillo JM (1995) Relationships between different prolamin proteins and some quality properties in durum wheat. Plant Breeding 114: 40–44.CrossRefGoogle Scholar
  186. Ruiz M, Carrillo JM (1996) Gli-B3/Glu-B2 encoded prolamins do not affect selected quality properties in the durum wheat cross ‘Abadía’בMexicali 75’. Plant Breeding 115: 410–412.CrossRefGoogle Scholar
  187. Ruiz M, Bernal G, Giraldo P (2018) An update of low molecular weight glutenin subunits in durum wheat relevant to breeding for quality. Journal of Cereal Science 83: 236–244.CrossRefGoogle Scholar
  188. Sapirstein HD, David P, Preston KR, Dexter JE (2007) Durum wheat breadmaking quality: effects of gluten strength, protein composition, semolina particle size and fermentation time. Journal of Cereal Science 45: 150–161.CrossRefGoogle Scholar
  189. Scheele GA (1975) Two-dimensional gel analysis of soluble proteins. Characterisation of guinea pig exocrine pancreatic proteins. Journal of Biological Chemistry 250: 5375–5385.PubMedPubMedCentralGoogle Scholar
  190. Schnable Lab (2015) Genotyping by multiplexing amplicon sequencing (GBMAS), c2001 2015 [updated 2015 Jul 6, cited 2015 Jul 29] Available:
  191. Schwarz G, Felsenstein FG, Wenzel G (2004). Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx-6) in wheat. Theoretical and Applied Genetics 109: 1064–1069.CrossRefPubMedPubMedCentralGoogle Scholar
  192. Scossa F, Laudencia-Chingcuanco D, Anderson OD, Vensel WH, Lafiandra D, D’Ovidio R (2008). Comparative proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line overexpressing a low molecular weight glutenin subunit gene in the endosperm. Proteomics 8: 2948–2966.CrossRefPubMedPubMedCentralGoogle Scholar
  193. Shewry PR (1999) The synthesis, processing, and deposition of gluten proteins in the developing wheat grain. Cereal Foods World 44: 587–589.Google Scholar
  194. Shewry PR, Miflin BJ, Lew EJL, Kasarda DD (1983) The preparation and characterization of an aggregated gliadin fraction from wheat. Journal of Experimental Botany 34: 1403.CrossRefGoogle Scholar
  195. Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. The Plant Cell 7: 945–956.PubMedPubMedCentralGoogle Scholar
  196. Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochemical Journal 267: 1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  197. Shewry PR, Tatham AS (1997) Disulphide bonds in wheat gluten proteins. Journal of Cereal Science 25: 207–227.CrossRefGoogle Scholar
  198. Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) The classification and nomenclature of wheat gluten proteins: a reassessment. Journal of Cereal Science 4: 97–106.CrossRefGoogle Scholar
  199. Shulka TP (1975) Cereal proteins: chemistry and food applications. Critical Reviews in Food Science and Nutrition 6: 1–77.CrossRefGoogle Scholar
  200. Sissons MJ, Ames NP, Hare RA, Clarke JM (2005) Relationship between glutenin subunit composition and gluten strength measurements in durum wheat. Journal of Science Food and Agriculture 85: 2445–2452.CrossRefGoogle Scholar
  201. Sissons MJ and Batey IL (2003). Protein and starch properties of some tetraploid wheats. Cereal Chemistry 80: 468–475.CrossRefGoogle Scholar
  202. Skylas DJ, Copeland L, Rathmell W, Wrigley CW (2001) The wheat-grain proteome as a basis for more efficient cultivar identification. Proteomics 1: 1542–1546.CrossRefGoogle Scholar
  203. Skylas DJ, Mackintosh JA, Cordwell ST et al. (2000) Proteome approach to the characterisation of protein composition in the developing and mature wheat-grain endosperm. J Cereal Sci 32:169–188.CrossRefGoogle Scholar
  204. Stephenson JL, McLuckey SA, Reid GE, Wells JM, Bundy JL (2002) Ion/ion chemistry as a top-down approach for protein analysis. Curren Opinion in Biotechnology 13: 57–64.CrossRefGoogle Scholar
  205. Subira J, Pena R, Álvaro F, Ammar K, Ramdani A, Royo C (2014) Breeding progress in the pasta-making quality of durum wheat cultivars released in Italy and Spain during the 20th century. Crop Pasture and Science 65: 16–26.CrossRefGoogle Scholar
  206. Swartz ME (2005) UPLC: an introduction and review. Journal of Liquid Chromatography and Related Technologies 28: 1253–1263.CrossRefGoogle Scholar
  207. Taha SA (1997) Prediction of durum wheat quality from electrophoretic and high-performance liquid chromatography pattern of gliadins. Acta Alimentaria 26: 117–130.Google Scholar
  208. Tao HP, Kasarda DD (1989) Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits. Journal of Experimental Botany 40: 1015–1020.CrossRefGoogle Scholar
  209. Tasleem-Tahir A, Nadaud I, Chambon C, Branlard G (2012) Expression profiling of starchy endosperm metabolic proteins at 21 stages of wheat grain development. Journal of Proteome Research 11: 2754–277.CrossRefGoogle Scholar
  210. Tatham AS, Shewry PR (1995) The S-poor prolamins of wheat, barley and rye. Journal of Cereal Science 22: 1–16.CrossRefGoogle Scholar
  211. Thiellement H, Bahrman N, Damerval C, Plomion C, Rossignol M, Santoni V, et al. (1999) Proteomics for genetic and physiological studies in plants. Electrophoresis 20: 2013–2026.CrossRefPubMedPubMedCentralGoogle Scholar
  212. Trad H, Ayed S, Rhazi L, Slim A, da Silva JAT, Hellal R, et al. (2014) Comparative quality analysis of gluten strength and the relationship with high molecular weight glutenin subunits of 6 tunisian durum wheat genotypes. Food Science and Biotechnology 23: 1363–1370.CrossRefGoogle Scholar
  213. Turchetta T, Ciaffi M, Porceddu E, Lafiandra D (1995) Relationship between electrophoretic pattern of storage proteins and gluten strength in durum wheat landraces from Turkey. Plant Breeding 114: 406–412.CrossRefGoogle Scholar
  214. Uthayakumaran S, Listiohadi Y, Baratta M, Batey IL, Wrigley CW (2006) Rapid identification and quantitation of high-molecular-weight glutenin subunits. Journal of Cereal Science 44: 34–39.CrossRefGoogle Scholar
  215. van Poecke RM, Maccaferri M, Tang J, Truong HT, Janssen A, van Orsouw N, et al. (2013) Sequence-based SNP genotyping in durum wheat. Plant Biotechnology Journal 11: 809–817.CrossRefPubMedPubMedCentralGoogle Scholar
  216. Vázquez JF, Ruiz M, Nieto-Taladriz MT, Albuquerque MM (1996) Effects on gluten strength of low Mr glutenin submits coded by alleles at Glu-A3 and Glu-B3 loci in durum wheat. Journal of Cereal Science 24: 125–130.CrossRefGoogle Scholar
  217. Vensel WH, Dupont FM, Chan R, Hurkman WJ (2007) Mass spectrometry based identifications of LMW glutenin subunits. In: Lookhart GL, Ng PKW, editors. Gluten proteins 2006. Minneapolis, MN: AACCI. P. 347–351.Google Scholar
  218. Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ (2005) Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5: 1594–1611.CrossRefPubMedPubMedCentralGoogle Scholar
  219. Waines JG and Payne PI 1987 Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theoretical and Applied Genetics 74: 71–76.CrossRefPubMedPubMedCentralGoogle Scholar
  220. Wang LH, Li GY, Peña RJ, Xia XC, He ZH (2010) Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). Journal of Cereal Science 51: 305–312.CrossRefGoogle Scholar
  221. Wang S, Wong D, Forrest K, Allen A, Chao S, Huan BE, et al. (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 00 single nucleotide polymorphism array. Plant Biotechnology Journal 12: 787–796.CrossRefPubMedPubMedCentralGoogle Scholar
  222. Wang LH, Zhao XL, He ZH, Ma W, Appels R, Peña RJ, (2009) Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics 118: 525–539.CrossRefPubMedPubMedCentralGoogle Scholar
  223. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, et al. (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16: 1090–1094.CrossRefPubMedPubMedCentralGoogle Scholar
  224. Wieser H (2007) Chemistry of gluten proteins. Food Microbiology 24: 115–119.CrossRefGoogle Scholar
  225. Wieser H, Antes S, Seilmeier W (1998) Quantitative determination of gluten protein types in wheat flour by reversed-phase high-performance liquid chromatography. Cereal Chemistry 75: 644–650.CrossRefGoogle Scholar
  226. Williams KL (1999) Genomes and proteomes: towards a multidimensional view of biology. Electrophoresis 20: 678–688.CrossRefPubMedPubMedCentralGoogle Scholar
  227. Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, et al. (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal 14: 1195–1206.CrossRefPubMedPubMedCentralGoogle Scholar
  228. Woychik JH, Boundy JA, Dimler RJ (1961) Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Archives of Biochemistry and Biophysics 94: 477–482.CrossRefPubMedPubMedCentralGoogle Scholar
  229. Wrigley CW (1968) Gel electrofocusing-a technique for analysing multiple protein samples by isoelectric focusing. Science Tools 15: 17–23.Google Scholar
  230. Wrigley CW (1970) Protein mapping by combined gel electrofocusing and electrophoresis: application to the study of genotypic variations in wheat gliadins. Biochemical Genetics 4:509–516.CrossRefPubMedPubMedCentralGoogle Scholar
  231. Wu Y, Engen JR, Hobbins WB (2006) Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. Journal of the American Society for Mass Spectrometry 17: 163–167.CrossRefPubMedPubMedCentralGoogle Scholar
  232. Xu Q, Xu J, Liu CL et al. (2008) PCR-based markers for identification of HMW-GS at Glu-B1x loci in common wheat. Journal of Cereal Science 47: 394–398.CrossRefGoogle Scholar
  233. Yahata E, Maruyama-Funatsuki W, Nishio Z, Tabiki T, Takata K, Yamamoto Y et al. (2005) Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. Proteomics 5: 3942–3953.CrossRefPubMedPubMedCentralGoogle Scholar
  234. Yan YM, Jiang Y, An XN, Pei YH, Pei XH, Zhang YZ, et al. (2009) Cloning, expression and functional analysis of HMW glutenin subunit 1By8 gene from Italy pasta wheat (Triticum turgidum L. ssp. durum). Journal of Cereal Science 50: 398–406.CrossRefGoogle Scholar
  235. Yu Z, Han C, Wang S, Lv D, Chen G, Li X et al. (2012) Fast separation and characterization of water-soluble proteins in wheat grains by reversed-phase ultra performance liquid chromatography (RP-UPLC). Journal of Cereal Science 57: 288–294.CrossRefGoogle Scholar
  236. Zhang Q, Dong YM, An XL, Wang AL, Zhang YZ et al. (2008) Characterization of HMW glutenin subunits in common wheat and related species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Journal of Cereal Science 47: 252–261.CrossRefGoogle Scholar
  237. Zhang W, Gianibelli MC, Rampling LR, Gale KR (2004) Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 108: 1409–1419.CrossRefPubMedPubMedCentralGoogle Scholar
  238. Zhang X, Liu D, Yang W, Liu K, Sun J, Guo X, et al. (2011) Development of a new marker system for identifying the complex members of the low molecular- weight glutenin subunit gene family in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 122: 1503–1516.CrossRefPubMedPubMedCentralGoogle Scholar
  239. Zheng W, Peng YC, Ma JH, Appels R, Sun DF, Ma WJ (2011) High frequency of abnormal high molecular weight glutenin alleles in Chinese wheat landraces of the Yangtze-River region. Journal of Cereal Science 54: 401–418.CrossRefGoogle Scholar
  240. Zhou JH, Zhao J, Yuan HC, Meng Y, Li Y, Wu L et al. (2007) Comparison of UPLC and HPLC for determination of trans-10-hydroxy-2-decenoicacid content in royal jelly by ultrasound-assisted extraction with internal standard. Chromatographia 66: 185–190.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Patricia Giraldo
    • 1
    Email author
  • Magdalena Ruiz
    • 2
  • M. Itria Ibba
    • 3
  • Craig F. Morris
    • 4
  • Maryke T. Labuschagne
    • 5
  • Gilberto Igrejas
    • 6
  1. 1.Department of Biotechnology-Plant BiologySchool of Agricultural, Food and Biosystems Engineering, Universidad Politécnica de MadridMadridSpain
  2. 2.Centro de Recursos Fitogenéticos (CRF-INIA)MadridSpain
  3. 3.Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)CPMexico
  4. 4.USDA ARS Western Wheat Quality Laboratory, Washington State UniversityPullmanUSA
  5. 5.Department of Plant SciencesUniversity of the Free StateBloemfonteinSouth Africa
  6. 6.Department of Genetics and BiotechnologyUniversity of Trás-os-Montes and Alto DouroVila RealPortugal

Personalised recommendations