Advertisement

Wheat Cell Wall Polysaccharides (Dietary Fibre)

  • Peter ShewryEmail author
  • Ondrej Kosik
  • Till Pellny
  • Alison Lovegrove
Chapter
  • 41 Downloads

Abstract

Wheat is a major source of dietary fibre in the human diet, with whole grain containing about 11–15% fibre/g dry wt. However, in most countries wheat is most widely consumed after milling to give white flour, reducing the fibre content to less than 5%. The major dietary fibre components in white flour are the cell wall polysaccharides arabinoxylan and β-glucan. This chapter therefore focuses on these components, reviewing their structures and properties, biosynthesis, variation in amount and composition and genetic control. This provides a basis for increasing the content of wheat fibre and manipulating its properties to optimise the health benefits of wheat-based foods.

Keywords

Dietary fibre Arabinoxylan β-glucan Cell walls Polysaccharides Ferulic acid CAZymes 

Notes

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK and the work forms part of the Designing Future Wheat strategic programme (BB/P016855/1).

References

  1. Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RAC (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proceedings of the National Academy of Sciences USA 109: 989–993.Google Scholar
  2. Andersson R, Westerlund E, Aman P (1994) Natural variations in the contents of structural elements of water-extractable non-starch polysaccharides in white flour. Journal of Cereal Science 19: 77–82.CrossRefGoogle Scholar
  3. Andersson R, Westerlund E, Tilly A-C, Aman P (1992) Natural variations in the chemical composition of white flour. Journal of Cereal Science 17: 183–189.CrossRefGoogle Scholar
  4. Andersson AAM, Andersson R, Piironen V, Lampi A-M, Nystrom L, Boros D, Fras A, Gebruers K, Courtin CM, Delcour JA, Raskzegi M, Bedo Z, Ward JL, Shewry PR, Aman P (2013) Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry 136: 1243–1248.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anderson JW, Baird P, Davis Jr RH, Ferreri S, Knudtson M, Koraym A, Waters V, Williams C.L (2009) Health benefits of dietary fiber. Nutrition Reviews 67: 188–205.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Antoine C, Peyron S, Lullien-Pellerin V, Abecassis J, Rouau X (2004), Wheat bran tissue fractionation using biochemical markers, Journal of Cereal Science 39: 387–393.CrossRefGoogle Scholar
  7. Antoine C, Peyron S, Mabille F, Lapierre C, Bouchet B, Abecassis J, Rouau X (2003) Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran. Journal of Agriculture and Food Chemistry 51: 2026–2033.CrossRefGoogle Scholar
  8. Bacic A, Stone BA (1981) Chemistry and organisation of aleurone cell wall components from wheat and barley. Australian Journal of Plant Physiology 8: 475–495.Google Scholar
  9. Barron C, Parker ML, Mills ENC, Rouau X, Wilson RH (2005) FT-IR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness. Planta 220: 667–677.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barron C, Surget A, Rouau X (2007) Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. Journal of Cereal Science 45: 88–96.CrossRefGoogle Scholar
  11. Bates B, Lennox A, Prentice A, Bates C, Page P, Nicholson S, Swan G (Eds) (2014a) National Diet and Nutrition Survey: Results from Years 1–4 (combined) of the Rolling Programme (2008/2009–2011/2012). Executive Summary, Public Health England, London, UK.Google Scholar
  12. Bates B, Lennox A, Prentice A, Bates C, Page P, Nicholson S, Swan G (Eds) (2014b) National Diet and Nutrition Survey: Results from Years 1–4 (combined) of the Rolling Programme (2008/2009–2011/2012). Public Health England, London.Google Scholar
  13. Bonnin E, Le Goff A, Saulnier L, Charand M, Thibault JF (1998) Preliminary characterisation of endogenous wheat arabinoxylan-degrading enzymic extracts. Journal of Cereal Science 28: 53–62.CrossRefGoogle Scholar
  14. Bordes J, Ravel C, Le Gouis J, Lapierre A, Charmet G, Balfourier F (2011) Use of a global wheat core collection for association analysis of flour and quality traits. Journal of Cereal Science 54: 137–147.CrossRefGoogle Scholar
  15. Bromley JR, Busse-Wicher M, Tryfona T, Mortimer JC, Zhang Z, Brown DM, Dupree P (2013) GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant Journal 74: 423–434.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bunzel M, Ralph J, Lu F, Hatfield R, Steinhart H (2004) Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains. Journal of Agricultural and Food Chemistry 52: 6496–6502.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Buttriss JL, CS Stokes (2008) Dietary fibre and health, an overview. Nutrition Bulletin 33: 186–200.CrossRefGoogle Scholar
  18. Charmet G, Masood-Quraishi U, Ravel C, Romeuf I, Balfourier F, Perretant MR, Joseph JL, Rakszegi M, Guillon F, Sado PE, Bedo Z, Saulnier L (2009) Genetics of dietary fibre in bread wheat, Euphytica 170: 155–168.CrossRefGoogle Scholar
  19. Chateigner-Boutin AL, Bouchet B, Alvarado C, Bakan B, Guillon F (2014) The wheat grain contains pectic domains exhibiting specific spatial and development-associated distribution. PLoS One PMID: 24586916.
  20. Ciccoritti R., Scalfati G., Cammerata A., Sgrulletta, D (2011) Variations in content and extractability of durum wheat (Triticum turgidum L. var durum) arabinoxylans associated with genetic and environmental factors. International Journal of Molecular Sciences 12: 4536–4549.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Crowell EFF, Bischoff V, Desprez T, Rolland A, Stierhof Y-D, Schumacher K, Gonneau M, Höfte H, Vernhettes S (2009) Pausing of Golgi Bodies on Microtubules Regulates Secretion of Cellulose Synthase Complexes in Arabidopsis. The Plant Cell 21: 1141–1154.CrossRefPubMedPubMedCentralGoogle Scholar
  22. De Santis MA, Kosik O, Passmore D, Flagella Z, Shewry PR (2018) Comparison of the dietary fibre composition of old and modern durum wheat (Triticium turgidum spp. Durum) genotypes. Food Chemistry 244: 304–310.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dimitroff G, Little A, Lahnstein J, Schwerdt JG, Srivastava V, Bulone V, Burton RA, Fincher GB (2016) (1,3;1,4)-β-Glucan Biosynthesis by the CSLF6 Enzyme: Position and Flexibility of Catalytic Residues Influence Product Fine Structure. Biochemistry 55: 2054–2061.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dornez E, Gebruers K, Joye IJ, de Ketelaere B, Lenartz J, MassauxC, Bodson B, Delcour JA, Courtin CM (2008) Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. Journal of Cereal Science 47: 180–189.Google Scholar
  25. Finnie SM, Bettge AD, Morris CF (2006) Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chemistry 83: 617–623.CrossRefGoogle Scholar
  26. Freeman J, Lovegrove A, Wilkinson MD, Saulnier L, Shewry PR, Mitchell RAC (2016) Effect of suppression of arabinoxylan synthetic genes in wheat endosperm on chain length of arabinoxylan and extract viscosity. Plant Biotechnology Journal 14: 109–116.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Freeman J, Ward JL, Kosik O, Lovegrove A, Wilkinson MD, Shewry PR, Mitchell RA C (2017) Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from RNAi lines with suppression of genes responsible for backbone synthesis and decoration. Plant Biotechnology Journal 15: 1429–1438.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gartaula G, Dhital S, Netzel G, Flanagan BM, Yakubov GE, Beahan CT, Collins HM, Burton RA, Bacic A, Gidley MJ (2018) Quantitative structural organisation model for wheat endosperm cell walls: Cellulose as an important constituent. Carbohydrate Polymers 196: 199–208.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gebruers K, Dornez E, Boros D, Frás A, Dynkowska W, Bedő Z, Rakszegi M, Delcour JA, Courtin CM (2008) Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN Diversity screen. Journal of Agricultural and Food Chemistry 56: 9740–9749.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gebruers K, Dornez E, Bedo Z, Rakszegi M, Frais A, Boros D, Courtin CM, Delcour JA (2010a) Environment and genotype effects on the content of dietary fiber and it’s components in wheat in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 58: 9353–9361.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gebruers K, Dornez E, Bedo Z, Rakszegi M, Courtin CM, Delcour JA (2010b) Variability in xylanase and xylanase inhibitor activities in different cereals in the HEALTHGRAIN diversity screen and contribution of environment and genotype to this variability in common wheat. Journal of Agricultural and Food Chemistry 58: 9362–9371.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gonneau M, Desprez T, Guillot A, Vernhettes S, Hofte H (2014) Catalytic Subunit Stoichiometry within the Cellulose Synthase Complex. Plant Physiology 166: 1709–1712.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Graybosch RA (2001) Uneasy unions: Quality effects of rye chromatin transfers to wheat. Journal of Cereal Science 33: 3–16.CrossRefGoogle Scholar
  34. Helldán A, Raulio S, Kosola M, Tapanainen H, Ovaskainen M-L, Virtanen S (2012) The National FINDIET 2012 Survey. National Institutes of Health and Welfare, Helsinki, Finland.Google Scholar
  35. Henrissat B, Davies GJ (2000) Glycoside Hydrolases and Glycosyltransferases. Families, Modules, and Implications for Genomics. Plant Physiology 124: 1515–1519.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hong BH, Rubenthaler GL, Allen RE (1989) Wheat pentosans. I. Cultivar variation and relationship to kernel hardness. Cereal Chemistry 66: 369–373.Google Scholar
  37. Kumar M, Atanassov I, Turner S (2017) Functional Analysis of Cellulose Synthase (CESA) Protein Class Specificity. Plant Physiology 173: 970–983.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E, Devienne-Barret F, Le Gouis J (2007) Using genotype x nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theoretical and Applied Genetics 115: 399–415.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lazaridou A, Biliaderis C G, Micha-Screttas M, Steele BR (2004) A comparative study on structure-function relations of mixed-linkage (1→3), (1→4) linear β-D-glucans. Food Hydrocolloids 18: 837–855.CrossRefGoogle Scholar
  40. Lazaridou A, Biliaderis CG (2007) Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. Journal of Cereal Science 46: 101–118.CrossRefGoogle Scholar
  41. Li W, Cui SW, Kakuda Y (2006) Extraction, fractionation, structural and physical characterization of wheat β-D-glucans. Carbohydrate Polymers 63: 404–408.Google Scholar
  42. Lockhart J (2015) Uncovering the Unexpected Site of Biosynthesis of a Major Cell Wall Component in Grasses. The Plant Cell 27: 483.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lovegrove A, Wilkinson MD, Freeman J, Pellny TK, Tosi P, Saulnier L, Shewry PR, Mitchell RAC (2013) RNAi suppression of genes in glycosly transferase families 43 and 47 in wheat starchy endosperm causes large decreases in arabinoxylan content. Plant Physiology 163: 95–107.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lovegrove A, Wingen LU, Plummer A, Wood A, Passmore D, Kosik O, Freeman J, Mitchell RAC, Hassall K, Ulker M, Tremmel-Bede K, Rakszegi M, Bedo Z, Perretant M-R, Charmet G, Pont C, Salse J, Leverington Waite M, Orford S, Burridge A, Pellny TK, Shewry PR, Griffiths S. (2020) Identification of a major QTL and associated molecular marker for high arabinoxylan fibre in white flour. PLOS ONE https://doi.org/10.1371/journal.pone.0227826.
  45. Mandalari G, Faulds CB, Sancho AI, Bisignano G, LoCurto R, Waldron KW (2005) Fractionation and characterisation of arabinoxylans from brewers’ spent grain and wheat bran. Journal of Cereal Science 42: 205–212.CrossRefGoogle Scholar
  46. Marcotuli I, Houston K, Waugh R, Fincher GB, Burton RA, Blanco A, Gadaleta A (2015) Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats. PLOS One 10(7) e0132787.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mares DJ, Stone BA (1973) Studies on wheat endosperm. I. Chemical composition and ultrastructure of the cell walls. Australian Journal of Biological Science 26: 793–812.CrossRefGoogle Scholar
  48. Martinant JP, Billot A, Bouguennec A, Charmet G, Saulnier L, Branlard G (1999) Genetic and environmental variations in water-extractable arabinoxylans content and flour extract viscosity. Journal of Cereal Science 30: 45–48.CrossRefGoogle Scholar
  49. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nature Biotechnology 18: 455–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nemeth C, Freeman J, Jones HD, Sparks C, Pellny TK, Wilkinson MD, Dunwell J, Andersson AAM, Åman P, Guillon F, Saulnier L, Mitchell RAC, Shewry PR (2010) Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D-glucan in endosperm of wheat. Plant Physiology 152: 1209–1218.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ordaz-Ortiz JJ, Saulnier L (2005) Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable and xylanase-extractable arabinoxylans. Journal of Cereal Science 42: 119–125.CrossRefGoogle Scholar
  52. Palmer R, Cornuault V, Marcus SE, Knox P, Shewry PR, Tosi P (2015) Comparative in situ analyses of cell wall matrix polysaccharide dynamics in developing rice and wheat grain. Planta 241: 669–685.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Parker ML, Ng A, Waldron KW (2005) The phenolic acid and polysaccharide composition of cell walls of bran layers of mature wheat (Triticum aestivum L. cv. Avalon) grains. Journal of the Science of Agricultural and Food Chemistry 85: 2539–2547.CrossRefGoogle Scholar
  54. Pellny TK, Lovegrove A, Freeman J, Tosi P, Love CG, Knox P, Shewry PR, Mitchell RAC (2012) Cell walls of developing wheat starchy endosperm: comparison of composition and RNA-Seq transcriptome. Plant Physiology 158: 612–627.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theoetrical and Applied Genetic, 100: 1167–1175.CrossRefGoogle Scholar
  56. Pinard D, Mizrachi E, Hefer CA, Kersting AR, Joubert F, Douglas CJ, Mansfield SD, Myburg AA (2015) Comparative analysis of plant carbohydrate active enZymes and their role in xylogenesis. BMC Genomics 16: 402.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pritchard JR, Lawrence GJ, Larroque O, Li Z, Laidlaw HKC, Morell MK, Rahman S (2011) A survey of β-glucan and arabinoxylan content in wheat. Journal of Agricultural Food Chemistry 91: 1298–1303.CrossRefGoogle Scholar
  58. Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Functional and Integrative Genomics 9: 473–484.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Quraishi U-M, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM, Bedő Z, Saulnier L, Guillon F, Balzergue S, Shewry PR, Feuillet C, Charmet G, Salse J (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fibre content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics 11: 71–83.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rhodes DI, Stone BA (2002) Proteins in walls of wheat aleurone cells. Journal of Cereal Science 36: 83–101.CrossRefGoogle Scholar
  61. SACN (2005). Carbohydrates and Health, UK Scientific Advisory Committee on Nutrition https://www.gov.uk/government/publications/sacn-carbohydrates-and-health-report
  62. Saulnier L, Peneau N, Thibault J-F (1995) Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. Journal of Cereal Science 22: 259–264.CrossRefGoogle Scholar
  63. Saulnier L, Thibault JF (1999) Ferulic acid and diferulic acids as components of sugar beet pectins and maize bran heteroxylans. Journal of the Science of Food and Agriculture 79: 396–402.CrossRefGoogle Scholar
  64. Saulnier L, Sado P-E, Branlard G, Charmet G, Guillon F (2007) Wheat arabinoxylans; exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science 46: 261–281.CrossRefGoogle Scholar
  65. Saulnier L, Robert P, Grintchenko M, Jamme F, Bouchet B, Guillon F (2009). Wheat endosperm cell walls: Spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy. Journal of Cereal Science 50: 312–317.CrossRefGoogle Scholar
  66. Schneider R, Hanak T, Persson S, Voigt CA (2016) Cellulose and callose synthesis and organization in focus, what’s new? Current Opinion in Plant Biology 34: 9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Selanere ML, Andersson R (2002) Cell wall composition of 1B/1R translocation wheat grains. Journal of the Science of Food and Agriculture 82: 538–545.CrossRefGoogle Scholar
  68. Shewry PR, Piironen V, Lampi A-M, Edelmann M, KariluotoS, Nurmi T, Fernandez-Orozco R, Ravel C, Charmet G, Andersson AAM, Åman P, Boros D, Gebruers K, Dornez E, Courtin CM, Delcour JA, Rakszegi M, Bedő Z, Ward JL (2010a) The HEALTHGRAIN wheat diversity screen: effects of genotype and environment on phytochemicals and dietary fiber components. Journal of Agricultural and Food Chemistry 58: 9291–9298.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shewry PR, Freeman J, Wilkinson M, Pellny T, Mitchell RAC (2010b) Challenges and opportunities for using wheat for biofuel production. In: Energy Crops. N Halford and A Karp, Eds. RSC, London, pp. 13–26.CrossRefGoogle Scholar
  70. Shewry PR, Saulnier L, Guillon F, Gebruers K, Courtin C, Delcour J, Toole G, Boros D, Salse J, Ravel C, Mills ENC, Ward JL, Charmet G. (2010c) In: Dietary Fibre: New Frontiers for Food and Health (eds. J.W. van der Kamp, J.M. Jones, B.V. McCleary and D.L. Topping). Wageningen Academic Publishers, Wageningen, Netherlands, pp. 65–78.Google Scholar
  71. Steer T, Thane C, Stephen A, Jebb S (2008) Bread in the diet: consumption and contribution to nutrient intakes of British adults. Proceedings of the Nutrition Society 67: E363.CrossRefGoogle Scholar
  72. Stone B, Morell MK (2009) In Wheat Chemistry and Technology, 4th ed., K. Khan and P.R. Shewry Eds. American Association of Cereal Chemists, St Paul, MN.Google Scholar
  73. Toole GA, Wilson RH, Parker ML, Wellner NK, Wheeler TR, Shewry PR, Mills ENC (2007) The effect of environment on endosperm cell-wall development in Triticum aestivum during grain filling: an infrared spectroscopic imaging study. Planta 225: 1393–1403.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Toole GA, Le Gall G, Colquhoun IJ, Bedo Z, Saulnier L, Shewry PR, Mills ECN (2011) Spectroscopic analysis of diversity of arabinoxylan structrues in endosperm cell walls of wheat cultivars (Triticum aestivum) in the HEALTHGRAIN diversity collection. Journal of the Science of Agricultural and Food Chemistry 59: 7075–7082.CrossRefGoogle Scholar
  75. Tremmel-Bede K, Lang OL, Torok K, Tomoskozi S, Vida G, Shewry PR, Bedo Z, Rakszegi M. (2017) Development and characterisation of wheat lines with increased levels of arabinoxylan. Euphytica 213: 291.CrossRefGoogle Scholar
  76. USAID (2011) Regional View of Wheat Markets and Food Security in Central Asia https://documents.wfp.org/stellent/groups/public/documents/ena/wfp238576.pdf
  77. Velickovic D, Saulnier L, Lhomme M, Damond A, Guillon F (2016) Mass spectrometric imaging of wheat (Triticum spp.) and barley (Hordeum vulgare L.) cultivars: distribution of major cell wall polysaccharides according to their main structural features. Journal of the Science of Agricultural and Food Chemistry 64: 6249–6256.CrossRefGoogle Scholar
  78. Ward J, Poutanen K, Gebruers K, Piironen V, Lampi A-M, Nystrom L, Anderson A A M, Åman P, Boros D, Rakszegi M, Bedo Z, Shewry PR (2008) The HEALTHGRAIN cereal diversity screen: concept, results and prospects, J Agric Food Chem 56: 9699–9709.Google Scholar
  79. Wilson SM, Ho YY, Lampugnani ER, Van de Meene AML, Bain MP, Bacic A. Doblin MS (2015) Determining the Subcellular Location of Synthesis and Assembly of the Cell Wall Polysaccharide (1,3; 1,4)-β-d-Glucan in Grasses. Plant Cell. 27: 754–771.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yang L, Huang YL, Chang P, Yan J, Zhang YL, Xia XC, Tian YB, He ZH, Zhang Y (2014) QTL Mapping for arabinoxylans content and its relationship with processing quality in common wheat. Acta Agrononica Sinica 40: 1695–1701.CrossRefGoogle Scholar
  81. Yang L, Zhao D, Yan J, Zhang Y, Xia X, Tian Y, He Z, Zhang Y (2016) QTL mapping of grain arabinoxylan contents in common wheat using a recombinant inbred line population. Euphytica 208: 205–214.CrossRefGoogle Scholar
  82. Zeng W, Lampugnani ER, Picard KL, Song L, Wu A, Farion IM, Zhao J, Ford K, Doblin MS, Bacic A (2016) Asparagus IRX9, IRX10, and IRX14A Are Components of an Active Xylan Backbone Synthase Complex that Forms in the Golgi Apparatus. Plant Physiology 171: 93–109.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhang Y, Nikolovski N, Sorieul M, Vellosillo T, McFarlane HE, Dupree R, Kesten C, Schneider R, Driemeier C, Lathe R, Lampugnani E, Yu X, Ivakov A, Doblin MS, Mortimer JC, Brown SP, Persson S, Dupree P (2016) Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nature Communications 7: 11656.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Peter Shewry
    • 1
    Email author
  • Ondrej Kosik
    • 1
  • Till Pellny
    • 1
  • Alison Lovegrove
    • 1
  1. 1.Department of Plant SciencesRothamsted ResearchHarpendenUK

Personalised recommendations