Type-2 Fuzzy Logic for Dynamic Parameter Adaptation in the Imperialist Competitive Algorithm

  • Emer Bernal
  • Oscar CastilloEmail author
  • José Soria
  • Fevrier Valdez
Part of the Studies in Computational Intelligence book series (SCI, volume 827)


In this paper we propose the utilization of type-2 fuzzy systems for the dynamic adjustment of parameters in the imperialist competitive algorithm (ICA), a type-1 fuzzy system was used as a basis, with decades as the input variable and the beta parameter as the output variable, then it was extended to interval type-2 fuzzy systems, and three variants with triangular, Gaussian and trapezoidal membership functions were performed. The imperialist competitive algorithm is based on the concept of imperialism, where the strongest countries absorb the weakest and make then their colonies. To measure the performance of the proposed method 10 mathematical functions with different number of decades are used and finally, a comparison was made between our variants and the results obtained with the type-1 fuzzy system to observe their behavior in the face of optimization problems.


Imperialist competitive algorithm Mathematical functions Fuzzy system Type-2 fuzzy system 



We want to show our gratitude to CONACYT and Tijuana institute of technology for the resources provided for the development of our research.


  1. 1.
    E. Bernal, O. Castillo, J. Soria, A fuzzy logic approach for dynamic adaptation of parameters in galactic swarm optimization, in Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) (IEEE, 2017), pp. 1–6Google Scholar
  2. 2.
    F. Valdez, P. Melin, O. Castillo, An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl. Soft Comput. 11(2), 2625–2632 (2011)CrossRefGoogle Scholar
  3. 3.
    E. Bernal, O. Castillo, J. Soria, F. Valdez, Imperialist competitive algorithm with dynamic parameter adaptation using fuzzy logic applied to the optimization of mathematical functions. Algorithms 10(1), 18 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    B. González, F. Valdez, P. Melin, A gravitational search algorithm using type-2 fuzzy logic for parameter adaptation, in Nature-Inspired Design of Hybrid Intelligent Systems, vol. 667 (Springer, Cham, 2017), pp. 127–138 Google Scholar
  5. 5.
    P. Ochoa, O. Castillo, J. Soria, Differential evolution using fuzzy logic and a comparative study with other metaheuristics, in Nature-Inspired Design of Hybrid Intelligent Systems, vol. 667 (Springer, Cham, 2017), pp. 257–268Google Scholar
  6. 6.
    M.J. Mahmoodabadi, H. Jahanshahi, Multi objective optimized fuzzy-PID controllers for fourth order nonlinear systems. Int. J. Eng. Sci. Technol. 19(2), 1084–1098 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Zadeh, Fuzzy logic=computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)CrossRefGoogle Scholar
  8. 8.
    E. Ontiveros-robles, P. Melin, O. Castillo, Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54(1), 175–201 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    E. Atashpaz-gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Evol. Comput., 4661–4667 (2007)Google Scholar
  10. 10.
    E. Atashpaz-gargari, F. Hashemzadeh, R. Rajabioun, C. Lucas, Colonial competitive algorithm: a novel approach for PID controller design in mimo distillation column process. Int. J. Intell. Comput. Cybern. 1(3), 337–355 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    E. Bernal, O. Castillo, J. Soria, Imperialist competitive algorithm applied to the optimization of mathematical functions: a parameter variation study, in Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, vol. 601 (Springer International Publishing, 2015), pp. 219–232Google Scholar
  12. 12.
    H. Duan, L.Z. Huang, Imperialist competitive algorithm optimized artificial neural networks for UCAV global path planning. Neurocomputing 125, 166–171 (2013)CrossRefGoogle Scholar
  13. 13.
    E. Atashpaz-gargari, C. Lucas, Imperialist competitive algorithm for minimum bit error rate beamforming. Int. J. Bio Inspired Comput. 1(1–2), 125–133 (2009)Google Scholar
  14. 14.
    E. Bernal, O. Castillo, J. Soria, Fuzzy logic for dynamic adaptation in the imperialist competitive algorithm, in IEEE Symposium Series on Computational Intelligence (SSCI) (IEEE, 2017), pp. 1–7Google Scholar
  15. 15.
    E. Bernal, O. Castillo, J. Soria, Imperialist competitive algorithm with dynamic parameter adaptation applied to the optimization of mathematical functions, in Nature Inspired Design of Hybrid Intelligent Systems, vol. 667 (Springer International Publishing, 2017), pp. 329–341Google Scholar
  16. 16.
    M. Mitchell, An Introduction to Genetic Algorithms (Mit Press, Massachusetts, 1999)zbMATHGoogle Scholar
  17. 17.
    P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, M. Valdez, Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 40(8), 3196–3206 (2012)CrossRefGoogle Scholar
  18. 18.
    J.R. Castro, O. Castillo, L.G. Martinez, Interval type-2 fuzzy logic toolbox. Eng. Lett. 15(1), 89–98 (2007)Google Scholar
  19. 19.
    S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  20. 20.
    C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. AI 25(5), 971–979 (2012)CrossRefGoogle Scholar
  22. 22.
    O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)Google Scholar
  23. 23.
    G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in The 14th IEEE International Conference on Fuzzy Systems. FUZZ’05, (2005), pp. 230–235Google Scholar
  24. 24.
    E. Rubio, O. Castillo, F. Valdez, P. Melin, C.I. González, G. Martinez: An extension of the fuzzy possibilistic clustering algorithm using type-2 fuzzy logic techniques. Adv. Fuzzy Syst., 7094046:1-7094046:23 (2017)CrossRefGoogle Scholar
  25. 25.
    P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach. IEEE Trans. Ind. Electron. 48(5), 951–955CrossRefGoogle Scholar
  26. 26.
    L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219 (2003)CrossRefGoogle Scholar
  27. 27.
    P. Melin, O. Castillo, Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)CrossRefGoogle Scholar
  28. 28.
    P. Melin, J. Amezcua, F. Valdez, O. Castillo, A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    P. Melin, O. Castillo, Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, 2001)Google Scholar
  30. 30.
    P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Emer Bernal
    • 1
  • Oscar Castillo
    • 1
    Email author
  • José Soria
    • 1
  • Fevrier Valdez
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations