Advertisement

Optimization of Fuzzy Controllers for Autonomous Mobile Robots Using the Grey Wolf Optimizer

  • Eufronio Hernández
  • Oscar CastilloEmail author
  • José Soria
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 827)

Abstract

Through the advance of technology, every day new methods or computational techniques emerge that allow us to solve problems in different areas, such as medicine, engineering, even in any industrial process. Optimization is of vital importance in this industry, the main objective being to find the best possible solution to the problem. In this work we propose to use the Grey Wolf Optimizer (GWO), which is a metaheuristic, which is inspired by the hunting behavior and leadership hierarchy of grey wolves, in addition to analyzing and explaining the proposed methodology for the optimization of fuzzy controllers for mobile autonomous robots.

Keywords

Grey wolf optimizer (GWO) Autonomous mobile robots Fuzzy controllers Optimization Fuzzy system Bio-inspired algorithm 

Notes

Acknowledgements

It is widely appreciated to the Consejo Nacional de Ciencia y Tecnologia and Tecnologico Nacional de Mexico/Tijuana Institute of Technology for the time, resource, space and facilities provided for the development of this work.

References

  1. 1.
    X.-S. Yang, M. Karamanoglu, Swarm intelligence and bio-inspired computation: an overview. Swarm Intell. Bio-Inspired Comput. pp. 3–23 (Yang)CrossRefGoogle Scholar
  2. 2.
    P. Gupta, R. Cambini, S.S. Appadoo, Recent advances in optimization theory and applications. Ann. Oper. Res. (2018).  https://doi.org/10.1007/s10479-018-2984-yDOMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    X.S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    X.-S. Yang, Bat algorithm: literature review and applications. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013)CrossRefGoogle Scholar
  5. 5.
    X.-S. Yang, Firefly algorithm, Lévy flights and global optimization, in Research and Development in Intelligent Systems XXVI (2010), pp. 209–218Google Scholar
  6. 6.
    X.S. Yang, S. Deb, Cuckoo search via Lévy flights, in Proceeding of World Congress on Nature and Biologically Inspired Computing (NaBIC 2009), pp. 210–214Google Scholar
  7. 7.
    S. Das, A. Biswas, S. Dasgupta, A. Abraham, Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications, in Foundations of Computational Intelligence vol. 3: Global Optimization (Springer, Berlin, 2009)CrossRefGoogle Scholar
  8. 8.
    D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Dorigo, K. Socha, An introduction to ant colony optimization, in Handbook of Metaheuristics, vol 26, no l (IRIDIA, 2006, Brussels), ISSN 1781-3794Google Scholar
  10. 10.
    J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks (1995), pp. 1942–1948Google Scholar
  11. 11.
    D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (AddisonWesley, Boston, MA, 1987)Google Scholar
  12. 12.
    S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  13. 13.
    C. Muro, R. Escobedo, L. Spector, R. Coppinger, Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Process. 88, 192–197 (2011)CrossRefGoogle Scholar
  14. 14.
    L. Zadeh, Fuzzy logic. IEEE Comput. Mag. 1, 83–93 (1988)CrossRefGoogle Scholar
  15. 15.
    L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  17. 17.
    O. Castillo, P. Melin, O. Montiel, R. Sepulveda, W. Pedrycz, Theoretical Advances and Applications of Fuzzy Logic and Soft Computing (Springer, Tijuana, BC, 2007)CrossRefGoogle Scholar
  18. 18.
    R. Martinez, O. Castillo, L.T. Aguilar, Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179(13), 2158–2174 (2009)CrossRefGoogle Scholar
  19. 19.
    L. Rodriguez, O. Castillo, J. Soria, A study of parameters of the grey wolf optimizer algorithm for dynamic adaptation with fuzzy logic, in Nature-Inspired Design of Hybrid Intelligent Systems (Springer, Tijuana, Mexico, 2017), pp. 371–390Google Scholar
  20. 20.
    O. Castillo, R. Martínez-Marroquín, P. Melin, F. Valdez, J. Soria, Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf. Sci. 192, 19–38 (2012)CrossRefGoogle Scholar
  21. 21.
    O. Castillo, H. Neyoy, J. Soria, M. García, F. Valdez, Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot (Int. J. Adv. Robot, Syst, 2013)CrossRefGoogle Scholar
  22. 22.
    O. Carvajal, O. Castillo, J. Soria, Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the flower pollination algorithm. J. Autom. Mob. Robot. Intell. Syst. 12(1), 44–49 (2018)Google Scholar
  23. 23.
    M. Sanchez, O. Castillo, J. Castro, Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst. Appl. 42, 5904–5914 (2015)CrossRefGoogle Scholar
  24. 24.
    C. Soto, F. Valdez, O. Castillo, A review of dynamic parameter adaptation methods for the firefly algorithm, in Nature-Inspired Design of Hybrid Intelligent Systems (Springer, Tijuana, BC, 2007), pp. 285–295Google Scholar
  25. 25.
    L. Astudillo, P. Melin, O. Castillo, Chemical Optimization Algorithm for Fuzzy Controller Design (Springer, Tijuana, Mexico, 2014)CrossRefGoogle Scholar
  26. 26.
    A. Sombra, F. Valdez, P. Melin, O. Castillo, A new gravitational search algorithm using fuzzy logic to parameter adaptation, in IEEE Congress on Evolutionary Computation, Cancun, México (2013), pp. 1068–1074Google Scholar
  27. 27.
    F. Valdez, P. Melin, O. Castillo, Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making, in IEEE International Conference on Fuzzy Systems (2009), pp. 2114–2119Google Scholar
  28. 28.
    F. Olivas, F. Valdez, O. Castillo, C. Gonzales, G. Martinez, P. Melin, Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2016)CrossRefGoogle Scholar
  29. 29.
    T.Y. Abdalla, A. Abdulkareem, A PSO optimized fuzzy control scheme for mobile robot path tracking. Int. J. Comput. Appl. 76(2), 11–17 (2013).  https://doi.org/10.5120/13217-0608CrossRefGoogle Scholar
  30. 30.
    C. Leal Ramírez, O. Castillo, P. Melin, A. Rodríguez Díaz, Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181(3), 519–535 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    N.R. Cázarez-Castro, L.T. Aguilar, O. Castillo, Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems. Eng. Appl. AI 25(5), 971–979 (2012)CrossRefGoogle Scholar
  32. 32.
    O. Castillo, P. Melin, Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)Google Scholar
  33. 33.
    C.I. González, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved Sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)CrossRefGoogle Scholar
  34. 34.
    C.I. González, P. Melin, J.R. Castro, O. Castillo, Olivia Mendoza: optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)CrossRefGoogle Scholar
  35. 35.
    L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. Appl. Soft Comput. 3(3), 209–219 (2003)CrossRefGoogle Scholar
  36. 36.
    P. Melin, O. Castillo, Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)CrossRefGoogle Scholar
  37. 37.
    P. Melin, J. Amezcua, F. Valdez, O. Castillo, A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    P. Melin, O. Castillo, Modelling, Simulation and Control of Non-linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory (CRC Press, Boca Raton, 2001)Google Scholar
  39. 39.
    P. Melin, D. Sánchez, O. Castillo, Genetic optimization of modular neural networks with fuzzy response integration for human recognition. Inf. Sci. 197, 1–19 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Eufronio Hernández
    • 1
  • Oscar Castillo
    • 1
    Email author
  • José Soria
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations