Environment Recognition for Path Generation in Autonomous Mobile Robots

  • Ulises Orozco-Rosas
  • Kenia Picos
  • Oscar MontielEmail author
  • Oscar Castillo
Part of the Studies in Computational Intelligence book series (SCI, volume 827)


An efficient algorithm for path generation in autonomous mobile robots using a visual recognition approach is presented. The proposal includes image filtering techniques by employing an inspecting camera to sense a cluttered environment. Template matching filters are used to detect several environment elements, such as obstacles, feasible terrain, the target location, and the mobile robot. The proposed algorithm includes the parallel evolutionary artificial potential field to perform the path planning for autonomous navigation of the mobile robot. Our problem to be solved for autonomous navigation is to safely take a mobile robot from the starting point to the target point employing the path with the shortest distance and which also contains the safest route. To find the path that satisfies this condition, the proposed algorithm chooses the best candidate solution from a vast number of different paths calculated concurrently. For achieving efficient autonomous navigation, the proposal employs a parallel computation approach for the evolutionary artificial potential field algorithm for path generation and optimization. Experimental results yield accuracy in environment recognition in terms of quantitative metrics. The proposed algorithm demonstrates efficiency in path generation and optimization.


Parallel evolutionary artificial potential field Path planning Mobile robots Template matching Object recognition 



This work was supported in part by the Coordinación de Investigación of CETYS Universidad, in part by the Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico).


  1. 1.
    U. Orozco-Rosas, K. Picos, O. Montiel, R. Sepúlveda, V. Díaz-Ramírez, Obstacle recognition for path planning in autonomous mobile robots, in Optics and Photonics for Information Processing (2016)Google Scholar
  2. 2.
    O. Montiel, R. Sepúlveda, U. Orozco-Rosas, Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field. J. Intell. Robot. Syst. 79(2) (2014)CrossRefGoogle Scholar
  3. 3.
    V.H. Diaz-Ramirez, V. Contreras, V. Kober, K. Picos, Real-time tracking of multiple objects using adaptive correlation filters with complex constraints. Opt. Commun. 309, 265–278 (2013)CrossRefGoogle Scholar
  4. 4.
    B.V.K. Vijaya Kumar, L. Hassebrook, Performance measures for correlation filters. Appl. Opt. 29(20), 2997–3006 (1990)CrossRefGoogle Scholar
  5. 5.
    R. Kerekes, B. Vijaya-Kumar, Correlation filters with controlled scale response. IEEE Trans. Image Process. 15(7), 1794–1802 (2006)CrossRefGoogle Scholar
  6. 6.
    B. Javidi, J. Wang, Design of filters to detect a noisy target in nonoverlapping background noise. J. Opt. Soc. Am. A 11, 2604–2612 (1994)CrossRefGoogle Scholar
  7. 7.
    V.H. Diaz-Ramirez, K. Picos, V. Kober, Target tracking in nonuniform illumination conditions using locally adaptive correlation filters. Opt. Commun. 323, 32–43 (2014)CrossRefGoogle Scholar
  8. 8.
    V. Kober, J. Campos, Accuracy of location measurement of a noisy target in a nonoverlapping background. J. Opt. Soc. Am. A 13(8), 1653–1666 (1996)CrossRefGoogle Scholar
  9. 9.
    K. Picos, V.H. Diaz-Ramirez, V. Kober, A.S. Montemayor, J.J. Pantrigo, Accurate three-dimensional pose recognition from monocular images using template matched filtering. Opt. Eng. 55(6), 1–11 (2016)CrossRefGoogle Scholar
  10. 10.
    O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, in IEEE International Conference on Robotics and Automation (1985)Google Scholar
  11. 11.
    Q. Zhang, D. Chen, T. Chen, An obstacle avoidance method of soccer robot based on evolutionary artificial potential field. Energy Proc. 16-C, 1792–1798 (2012)CrossRefGoogle Scholar
  12. 12.
    U. Orozco-Rosas, O. Montiel, R. Sepúlveda, Pseudo-bacterial potential field based path planner for autonomous mobile robot navigation. Int. J. Adv. Rob. Syst. 12(81) (2015)CrossRefGoogle Scholar
  13. 13.
    O. Montiel, U. Orozco-Rosas, R. Sepúlveda, Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Syst. Appl. 42(12), 5177–5191 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Vadakkepat, C.T. Kay, M.-L. Wang, Evolutionary artificial potential fields and their application in real time robot path planning, in Congress on Evolutionary Computation (2000)Google Scholar
  15. 15.
    S.N. Sivanandam, S.N. Deepa, Introduction to Genetic Algorithms (Springer, Heidelberg, 2008)zbMATHGoogle Scholar
  16. 16.
    M. Mitchell, An introduction to Genetic Algorithms (Bradford, Cambridge, MA, 2001)zbMATHGoogle Scholar
  17. 17.
    D.B. Fogel, An introduction to evolutionary computation, in Evolutionary Computation: The Fossil Record (Wiley-IEEE Press, 1998), pp. 1–28Google Scholar
  18. 18.
    U. Orozco-Rosas, O. Montiel, R. Sepúlveda, Parallel bacterial potential field algorithm for path planning in mobile robots: a GPU implementation, in Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications (Springer, Berlin, 2018), pp. 207–222Google Scholar
  19. 19.
    U. Orozco-Rosas, O. Montiel, R. Sepúlveda, Embedded implementation of a parallel path planning algorithm based on EAPF for mobile robotics, in Avances recientes en Ciencias Computacionales - CiComp 2016 (Ensenada, 2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ulises Orozco-Rosas
    • 1
  • Kenia Picos
    • 1
  • Oscar Montiel
    • 2
    Email author
  • Oscar Castillo
    • 3
  1. 1.CETYS Universidad, Centro de Innovación y Diseño (CEID)TijuanaMexico
  2. 2.Instituto Politécnico Nacional, CITEDI-IPNTijuanaMexico
  3. 3.Tecnológico Nacional de México, Calzada Del Tecnológico S/N, Tomas AquinoTijuanaMexico

Personalised recommendations