Advertisement

Constrained Dual Graph Regularized NMF for Image Clustering

  • Shaodi Ge
  • Hongjun Li
  • Liuhong LuoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11901)

Abstract

Non-negative matrix factorization (NMF) becomes an important dimension reduction and feature extraction tool in the fields of scientific computing and computer vision. In this paper, for using the known label information in the original data, we put forward a semi-supervised NMF algorithm called constrained dual graph regularized non-negative matrix factorization (CDNMF). The new algorithm employs hard constraints to retain the priori label information of samples, constructs two association graphs to encode the geometric structures of the data manifold and the feature manifold, and incorporates the additional bi-orthogonal constraints to improve the identification ability of data in the new representation space. We have also developed an iterative optimization strategy for CDNMF and proved its convergence. Finally the clustering experiments on five standard image data sets show the effectiveness of the proposed algorithm.

Keywords

NMF Dual graph regularized Semi-supervised learning Image clustering 

Notes

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities No. 2015ZCQ-LY-01, and the National Natural Science Foundation of China under Grant No. 61571046.

References

  1. 1.
    He, X., Yan, S., Yuxiao, H., Niyogi, P., Zhang, H.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27, 328–340 (2005)CrossRefGoogle Scholar
  2. 2.
    Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1), 37–52 (1987)CrossRefGoogle Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 43–58. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0015522CrossRefGoogle Scholar
  4. 4.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefGoogle Scholar
  5. 5.
    Wang, C., Song, X., Zhang, J.: Graph regularized nonnegative matrix factorization with sample diversity for image representation. Eng. Appl. Artif. Intell. 68, 32–39 (2018)CrossRefGoogle Scholar
  6. 6.
    Meng, Y., Shang, R., Jiao, L., Zhang, W., Yuan, Y., Yang, S.: Feature selection based dual-graph sparse non-negative matrix factorization for local discriminative clustering. Neurocomputing 290, 87–99 (2018)CrossRefGoogle Scholar
  7. 7.
    Yang, S., Zhang, L., He, X., Yi, Z.: Learning manifold structures with subspace segmentations. IEEE Trans. Cybern. PP(99), 1–12 (2019). https://ieeexplore.ieee.org/document/8645761
  8. 8.
    Song, M., Peng, Y., Jiang, T., Li, J., Zhang, S.: Accelerated image factorization based on improved NMF algorithm. J. Real-Time Image Proc. 15(1), 93–105 (2018)CrossRefGoogle Scholar
  9. 9.
    Nikunen, J., Diment, A., Virtanen, T.: Separation of moving sound sources using multichannel NMF and acoustic tracking. IEEE/ACM Trans. Audio Speech Lang. Process. 26(2), 281–295 (2017)CrossRefGoogle Scholar
  10. 10.
    Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhu, W., Yan, Y., Peng, Y.: Topological structure regularized nonnegative matrix factorization for image clustering. Neural Comput. Appl., 1–19 (2018). https://link.springer.com/article/10.1007/s00521-018-3572-4
  12. 12.
    Wang, S., Huang, A.: Penalized nonnegative matrix tri-factorization for co-clustering. Expert Syst. Appl. 78, 64–73 (2017)CrossRefGoogle Scholar
  13. 13.
    Shang, F., Jiao, L.C., Fei, W.: Graph dual regularization non-negative matrix factorization for co-clustering. Pattern Recogn. 45(6), 2237–2250 (2012)CrossRefGoogle Scholar
  14. 14.
    Ruicong, Z., Markus, F., Qiuqi, R., Bastiaan, K.W.: Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition. IEEE Trans. Syst. Man Cybern. B Cybern. 41(1), 38–52 (2011)CrossRefGoogle Scholar
  15. 15.
    Sun, J., Wang, Z., Sun, F., Li, H.: Sparse dual graph-regularized NMF for image co-clustering. Neurocomputing 316, 156–165 (2018)CrossRefGoogle Scholar
  16. 16.
    Zhu, W., Yan, Y.: Label and orthogonality regularized non-negative matrix factorization for image classification. Sig. Process. Image Commun. 62, 139–148 (2018)CrossRefGoogle Scholar
  17. 17.
    Meng, Y., Shang, R., Jiao, L., Zhang, W., Yang, S.: Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints. Eng. Appl. Artif. Intell. 69, 24–35 (2018)CrossRefGoogle Scholar
  18. 18.
    Liu Haifeng, W., Zhaohui, L.X., Deng, C., Huang, T.S.: Constrained nonnegative matrix factorization for image representation. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1299–1311 (2012)CrossRefGoogle Scholar
  19. 19.
    Sun, F., Meixiang, X., Xuekao, H., Jiang, X.: Graph regularized and sparse nonnegative matrix factorization with hard constraints for data representation. Neurocomputing 173(P2), 233–244 (2016)CrossRefGoogle Scholar
  20. 20.
    Logothetis, N., Sheinberg, D.: Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996)CrossRefGoogle Scholar
  21. 21.
    Lee, D.D., Sebastian Seung, H.: Algorithms for non-negative matrix factorization. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, pp. 556–562. MIT Press, Cambridge (2001)Google Scholar
  22. 22.
    Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1357–1362 (1999)CrossRefGoogle Scholar
  23. 23.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (COIL-20). Technical report CUCS-005-96, Department of Computer Science, Columbia University, February 1996Google Scholar
  24. 24.
    Salehani, Y.E., Arabnejad, E., Cheriet, M.: Graph and sparse-based robust nonnegative block value decomposition for clustering. IEEE J. Sel. Top. Signal Process. 12(6), 1561–1574 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of ScienceBeijing Forestry UniversityBeijingChina

Personalised recommendations