Advertisement

Iterative Face Detection from the Global to Local

  • Jingdong MaEmail author
  • Yupin Luo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11901)

Abstract

To balance between accuracy and speed is a dilemma in face detection, and scale variance problem is one of the main causes. In this paper we propose fast and accurate iterative face detection method processing from the global to local. We define a class of object called “probable regions” which contain small faces. “Probable regions” are detected iteratively in order to enlarge the small face parts. Thus small faces turn into large faces after several iterations. We design a strategy of training samples augmentation to meet the requirement for two object classes, so that extra annotation is unneeded. Our method is simple and clear to deploy. Experiments show that our method achieves competitive accuracy with real time speed. Detection time consumption will not explicitly grow when resolution of sample image increases. The speed is merely related to actual amount of faces, which adapts to real world applications.

Keywords

Face detection Scale variance Iterative method Real-time detection 

References

  1. 1.
    Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Technical report, Microsoft Research (2010)Google Scholar
  2. 2.
    Chang, L., Deng, X., Zhou, M., et al.: Convolution neural network in image understanding. Autom. J. 42(9), 1300–1312 (2016)zbMATHGoogle Scholar
  3. 3.
    Farfade, S.S., Saberian, M.J., Li, L.J.: Multi-view face detection using deep convolutional neural networks. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, ICMR 2015, pp. 643–650. ACM, New York (2015)Google Scholar
  4. 4.
    Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115, 211–252 (2015) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Neural Information Processing Systems Conference, vol. 25, no. 2, pp. 109–1105 (2012)Google Scholar
  6. 6.
    Liu, Y., Li, H., Yan, J., Wei, F., Wang, X., Tang, X.: Recurrent scale approximation for object detection in CNN. In: IEEE International Conference on Computer Vision (2017)Google Scholar
  7. 7.
    Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network cascade for face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5325–5334 (2015)Google Scholar
  8. 8.
    Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multi-task cascaded convolutional networks. IEEE Sig. Process. Lett. 23(10), 1499–1503 (2016)CrossRefGoogle Scholar
  9. 9.
    Hao, Z., Liu, Y., Qin, H., Yan, J., Li, X., Hu, X.: Scale-aware face detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10578-9_23CrossRefGoogle Scholar
  11. 11.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  12. 12.
    Li, H., Liu, Y., Ouyang, W., et al.: Zoom out-and-in network with map attention decision for region proposal and object detection. Int. J. Comput. Vis. 127(3), 225–238 (2019)CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Wang, K., Wang, F., et al.: Advances and perspectives on applications of deep learning in visual object detection. Autom. J. 43(8), 1289–1305 (2017)zbMATHGoogle Scholar
  14. 14.
    Najibi, M., Samangouei, P., Chellappa, R., Davis, L.S.: SSH: single stage headless face detector. In: IEEE International Conference on Computer Vision (ICCV) (2017)Google Scholar
  15. 15.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)Google Scholar
  16. 16.
    Najibi, M., Rastegari, M., Davis, L.S.: G-CNN: an iterative grid based object detector. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2369–2377 (2016)Google Scholar
  17. 17.
    Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: S3FD: single shot scale-invariant face detector. In: IEEE International Conference on Computer Vision (ICCV) (2017)Google Scholar
  18. 18.
    Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: FaceBoxes: a CPU real-time face detector with high accuracy. In: IJCB (2017)Google Scholar
  19. 19.
    Viola, P., Jones, M.: Robust real-time face detection. IJCV 57, 137–154 (2004)CrossRefGoogle Scholar
  20. 20.
    Szegedy, C., et al.: Going deeper with convolutions. Technical report (2014)Google Scholar
  21. 21.
    Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 329–344. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10584-0_22CrossRefGoogle Scholar
  22. 22.
    Kostinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: ICCV Workshops, pp. 2144–2151 (2011)Google Scholar
  23. 23.
    Shi, X., Shan, S., Kan, M., et al.: Real-time rotation-invariant face detection with progressive calibration networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2295–2303 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tsinghua National Laboratory for Information Science and Technology (TNList), Department of AutomationTsinghua UniversityBeijingChina

Personalised recommendations