Advertisement

Saliency Detection Based on Foreground and Background Propagation

  • Qing XingEmail author
  • Suoping Zhang
  • Mingbing Li
  • Chaoqun Dang
  • Zhanhui Qi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11901)

Abstract

In recent years, image saliency detection has become a research hotspot in the field of computer vision. Although significant progress has been witnessed in visual saliency detection, several existing saliency detection methods still cannot highlight the complete salient object when under complex background. For the purpose of improving the robustness of saliency detection, we propose a novel salient detection method via foreground and background propagation. In order to take both foreground and background information into consideration, we obtain a background-prior map by computing the dissimilarity between superpixels and background labels. A foreground-prior map is obtained by calculating the difference of superpixels between the inner and outer of a convex hull. Then we use label propagation algorithm to propagate saliency information based on foreground and background prior maps. Finally, the two saliency maps are integrated to generate an accurate saliency map. The experimental results on two public available data sets MSRA and ECSSD demonstrate that the proposed method performs well against the state-of-the-art methods.

Keywords

Saliency detection Foreground prior Background prior Propagation 

Notes

Acknowledgement

Thanks for the support of National Key R&D Program Key Projects NQI (No.2017YFF0206400), the Natural Science Foundation of Tianjin (No.17JCYBJC16300), and Innovation Fund of National Ocean Technology Center (No.K51700404).

References

  1. 1.
    Schmid, C., Jurie, F., Sharma, G.: Discriminative spatial saliency for image classification. In: Computer Vision and Pattern Recognition, pp. 3506–3513. IEEE, Providence (2012)Google Scholar
  2. 2.
    Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: Computer Vision and Pattern Recognition, pp. 3586–3593. IEEE, Portland (2013)Google Scholar
  3. 3.
    Cheng, M.M., Mitra, N.J., Huang, X., et al.: Salient shape: group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014)CrossRefGoogle Scholar
  4. 4.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  5. 5.
    Cheng, M.M., Zhang, G.X., Niloy, J., et al.: Global contrast based salient region detection. In: Computer Vision and Pattern Recognition, pp. 409–416. IEEE, Colorado Springs (2011)Google Scholar
  6. 6.
    Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. Pattern Anal. Mach. Intell 34(10), 1915–1926 (2012)CrossRefGoogle Scholar
  7. 7.
    Yang, J., Yang, M.H.: Top-down visual saliency via joint CRF and dictionary learning. In: Computer Vision and Pattern Recognition, pp. 2296–2303. IEEE, Providence (2012)Google Scholar
  8. 8.
    Kanan, C., Tong, M.H., Zhang, L., et al.: SUN: top-down saliency using natural statistics. Vis. Cognit. 17(6–7), 979–1003 (2009)CrossRefGoogle Scholar
  9. 9.
    Huo, L., Jiao, L., Wang, S., Yang, S.: Object-level saliency detection with color attributes. Pattern Recogn. 49, 162–173 (2016)CrossRefGoogle Scholar
  10. 10.
    Zhou, L., Yang, Z., Yuan, Q., et al.: Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Trans. Image Process. 24(11), 3308–3320 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33712-3_3CrossRefGoogle Scholar
  12. 12.
    Qin, Y., Lu, H., Xu, Y., Wang, H.: Saliency detection via cellular automata. In: Computer Vision and Pattern Recognition, pp. 110–119. IEEE, Boston (2015)Google Scholar
  13. 13.
    Li, X., Lu, H., Zhang, L., et al.: Saliency detection via dense and sparse reconstruction. In: IEEE International Conference on Computer Vision, pp. 2976–2883. IEEE, Sydney (2013)Google Scholar
  14. 14.
    Wang, Q., Zheng, W., Piramuthu, R.: GraB: visual saliency via novel graph model and background priors. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Nevada (2016)Google Scholar
  15. 15.
    Borji, A., Cheng, M.M., Jiang, H., et al.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. Adv. Neural Inf. Process. Syst. 19, 545–552 (2007)Google Scholar
  17. 17.
    Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, John K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79547-6_7CrossRefGoogle Scholar
  18. 18.
    Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, Hawaii (2007)Google Scholar
  19. 19.
    Achanta, R., Hemami, S., Estrada, F., et al.: Frequency-tuned salient region detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. IEEE, Florida (2009)Google Scholar
  20. 20.
    Yang, C., Zhang, L., Lu, H., et al.: Saliency detection via graph-based manifold ranking. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1665–1672. IEEE, Portland (2013)Google Scholar
  21. 21.
    Li, X., Lu, H., Zhang, L., et al.: Saliency detection via dense and sparse reconstruction. In: IEEE International Conference on Computer Vision, pp. 2976–2883. IEEE, Portland (2013)Google Scholar
  22. 22.
    Wang, J., Lu, H., Li, X., et al.: Saliency detection via background and foreground seed selection. Neurocomputing 152(25), 359–368 (2015)CrossRefGoogle Scholar
  23. 23.
    Zhu, W.J., Liang, S., Wei, Y.C., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821. IEEE, Columbus (2014)Google Scholar
  24. 24.
    Zhang, M., Pang, Y., Wu, Y., et al.: Saliency detection via local structure propagation. J. Vis. Commun. Image Represent. 52, 131–142 (2018). S1047320318300129CrossRefGoogle Scholar
  25. 25.
    Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)CrossRefGoogle Scholar
  26. 26.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 9(1), 62–66 (1979)CrossRefGoogle Scholar
  27. 27.
    Van de, W.J., Gevers, T., Bagdanov, A.D.: Boosting color saliency in image feature detection. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 150–156 (2006)CrossRefGoogle Scholar
  28. 28.
    Li, H., Lu, H., Lin, Z., et al.: Inner and inter label propagation: salient object detection in the wild. IEEE Trans. Image Process. 24(10), 3176–3186 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yan, Q., Xu, L., Shi, J, Jia, J.: Hierarchical saliency detection. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162. IEEE, Portland (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Qing Xing
    • 1
    Email author
  • Suoping Zhang
    • 1
  • Mingbing Li
    • 1
  • Chaoqun Dang
    • 1
  • Zhanhui Qi
    • 1
  1. 1.National Ocean Technology CenterTianjinChina

Personalised recommendations