Density Map Estimation for Crowded Chicken

  • Dong Cheng
  • Tianze Rong
  • Guitao CaoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11903)


Intensive breeding is the trend of the breeding industry. In order to make it more convenient to manage and reduce labor costs, sometimes we need to estimate the number of individuals in the poultry farm and discriminate the density distribution to help scientific management. At the same time, crowd density estimation is a developing research direction in deep learning. There are both similarities and differences between crowd counting task and chicken counting task. Aimed at the characteristics of poultry farm images, this paper presents a solution to density estimation and counting of poultry individuals in poultry farm by deep network method. We designed an end to end model and transform the problem into a pixel-level classification problem to get the density map.


Density estimation Flock counting Pixel level classification 


  1. 1.
    Zhang, X.Y., Wang, S., Yun, X.: Bidirectional active learning: a two-way exploration into unlabeled and labeled data set. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3034–3044 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Zhang, X.Y., Shi, H., Zhu, X., et al.: Active semi-supervised learning based on self-expressive correlation with generative adversarial networks. Neurocomputing 345, 103–113 (2019)CrossRefGoogle Scholar
  3. 3.
    Zhang, X.Y., Shi, H., Li, C., et al.: Learning transferable self-attentive representations for action recognition in untrimmed videos with weak supervision. arXiv preprint arXiv:1902.07370 (2019)
  4. 4.
    Zhu, X., Zhang, X., Zhang, X.Y., et al.: A novel framework for semantic segmentation with generative adversarial network. J. Vis. Commun. Image Represent. 58, 532–543 (2019)CrossRefGoogle Scholar
  5. 5.
    Zhang, X.: Interactive patent classification based on multi-classifier fusion and active learning. Neurocomputing 127, 200–205 (2014)CrossRefGoogle Scholar
  6. 6.
    Li, C., Wang, X., Dong, W., et al.: Joint active learning with feature selection via CUR matrix decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1382–1396 (2018)CrossRefGoogle Scholar
  7. 7.
    Li, C., Wei, F., Dong, W., et al.: Dynamic structure embedded online multiple-output regression for streaming data. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 323–336 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, C., Liu, Q., Dong, W., et al.: Human age estimation based on locality and ordinal information. IEEE Trans. Cybern. 45(11), 2522–2534 (2014)CrossRefGoogle Scholar
  9. 9.
    Boominathan, L., Kruthiventi, S.S.S., Babu, R.V.: CrowdNet: A Deep Convolutional Network for Dense Crowd Counting (2016)Google Scholar
  10. 10.
    Zhang, Y., Zhou, D., Chen, S., et al.: Single-image crowd counting via multi-column convolutional neural network. In: Computer Vision & Pattern Recognition (2016)Google Scholar
  11. 11.
    Chen, L.C., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  12. 12.
    Sam, D.B., Surya, S., Babu, R.V.: Switching Convolutional Neural Network for Crowd Counting (2017)Google Scholar
  13. 13.
    Li, Y., Zhang, X., Chen, D.: CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes (2018)Google Scholar
  14. 14.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)Google Scholar
  15. 15.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)Google Scholar
  16. 16.
    Härdle, W.: Kernel Density Estimation. Smoothing Techniques. Springer, New York (1991)Google Scholar
  17. 17.
    Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
  18. 18.
    Zhang, N.C., Li, N.H., Wang, X., et al.: Cross-scene crowd counting via deep convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society (2015)Google Scholar
  19. 19.
    Huang, S., Li, X., Zhang, Z., et al.: Body structure aware deep crowd counting. IEEE Trans. Image Process. 27(3), 1049–1059 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: International Conference on Neural Information Processing Systems (2015)Google Scholar
  21. 21.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  22. 22.
    He, K., Gkioxari, G., Dollár, P., et al.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)Google Scholar
  23. 23.
    Liu, S., Qi, L., Qin, H., et al.: Path Aggregation Network for Instance Segmentation (2018)Google Scholar
  24. 24.
    Ren, Z., Yan, J., Ni, B., et al.: Unsupervised deep learning for optical flow estimation. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)Google Scholar
  25. 25.
    Lin, W., Zhou, Y., Xu, H., et al.: A tube-and-droplet-based approach for representing and analyzing motion trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1489–1503 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.East China Normal UniversityShanghaiChina

Personalised recommendations