Dynamic Multi-label Learning with Multiple New Labels

  • Lun Wang
  • Wentao Xiao
  • Shan YeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11903)


In a traditional multi-label learning task, an instance or object often has multiple labels. Previous works assume that the class labels are always fixed, i.e, the class labels in the test set are the same as that in the training set. Different from previous methods, we study a new problem setting where multiple new labels emerge in a dynamic environment. In this paper, we decompose the multiple labels pool to adjust the dynamic environment. The proposed method has several functions: classify instances on currently known labels, detect the emergence of several new labels then separate them using clustering, and construct a new classifier for each new label that works collaboratively with the classifier for known labels. Experimental results on publicly available data sets demonstrate that our method achieves superior performance, compared with the state-of-the-arts.


Multi-label learning Clustering Emerging new labels Incremental learning 


  1. 1.
    Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multilabel scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)CrossRefGoogle Scholar
  2. 2.
    Zhou, Z.-H., Zhang, M.-L., Huang, S.-J., Li, Y.-F.: Multi-instance multi-label learning. Artif. Intell. 176(1), 2291–2320 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Li, Y., Ji, S., Kumar, S., Ye, J., Zhou, Z.: Drosophila gene expression pattern annotation through multi-instance multi-label learning. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, pp. 1445–1450 (2009)Google Scholar
  4. 4.
    Zhou, Z.-H., Zhang, M.-L.: Multi-instance multi-label learning with application to scene classification. In: Advances in Neural Information Processing Systems 19, pp. 1609–1616. MIT Press, Cambridge (2007)Google Scholar
  5. 5.
    Li, C., Wei, F., Dong, W., Liu, Q., Wang, X., Zhang, X.: Dynamic structure embedded online multiple-output regression for streaming data. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 41(2), 323–336 (2019)CrossRefGoogle Scholar
  6. 6.
    Nguyen, N.: A new SVM approach to multi-instance multi-label learning. In: Proceedings of the 10th IEEE International Conference on Data Mining, Sydney, Australia, pp. 384–392 (2010)Google Scholar
  7. 7.
    Li, C., Wei, F., Yan, J., Dong, W., Liu, Q., Zha, H.: Self-paced multi-task learning. In: AAAI (2016)Google Scholar
  8. 8.
    Zhu, Y., Ting, K.M., Zhou, Z.-H.: Multi-label learning with emerging new labels. IEEE Trans. Knowl. Data Eng. 30(10), 1901–1914 (2018)CrossRefGoogle Scholar
  9. 9.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)Google Scholar
  10. 10.
    Li, C., Liu, Q., Dong, W., Zhu, X., Liu, J., Lu, H.: Human age estimation based on locality and ordinal information. IEEE Trans. Cybern. 45(11), 2522–2534 (2014)CrossRefGoogle Scholar
  11. 11.
    Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceeding ICDM 2008 Proceedings of the 8th IEEE International Conference on Data Mining, pp. 413–422 (2008)Google Scholar
  12. 12.
    Ruping, S.: Incremental learning with support vector machines. In: Proceedings of the 1st IEEE International Conference on Data Mining, pp. 641–642 (2001)Google Scholar
  13. 13.
    Li, C., Liu, Q., Liu, J., Lu, H.: Learning ordinal discriminative features for age estimation. In: IEEE Computer Vision and Pattern Recognition (2012)Google Scholar
  14. 14.
    Gao, S., Wu, W., Lee, C., Chua, T.: A MFoM learning approach to robust multiclass multi-label text categorization. In: ICML (2004)Google Scholar
  15. 15.
    Song, L., et al.: A deep multi-modal CNN for multi-instance multi-label image classification. IEEE Trans. Image Process. 27(12), 6025–6038 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, C., Liu, Q., Liu, J., Lu, H.: Ordinal distance metric learning for image ranking. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1551–1559 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Burkhardt, S., Kramer, S.: Online multi-label dependency topic models for text classification. Mach. Learn. 107(5), 859–886 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, C., Wei, F., Yan, J., Zhang, X., Liu, Q., Zha, H.: A self-paced regularization framework for multilabel learning. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2660–2666 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)CrossRefGoogle Scholar
  20. 20.
    Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhang, M.L., Li, Y.K., Liu, X.Y., et al.: Binary relevance for multi-label learning: an overview. Front. Comput. Sci. 12(2), 191–202 (2018)CrossRefGoogle Scholar
  22. 22.
    Fürnkranz, J., Hüllermeier, E., Mencía, E.L., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)CrossRefGoogle Scholar
  23. 23.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Read, J., Bifet, A., Pfahringer, B., Holmes, G.: Batch-incremental versus instance-incremental learning in dynamic and evolving data. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 313–323. Springer, Heidelberg (2012). Scholar
  25. 25.
    Zhang, B., Su, J., Xu, X.: A class-incremental learning method for multi-class support vector machines in text classification. In: 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, pp. 2581–2585 (2006)Google Scholar
  26. 26.
    Read, J., Puurula, A., Bifet, A.: Multi-label classification with meta-labels. In: 2014 IEEE International Conference on Data Mining, Shenzhen, pp. 941–946 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyDonghua UniversityShanghaiChina

Personalised recommendations