Advertisement

A Novel Robust Blind Digital Image Watermarking Scheme Against JPEG2000 Compression

  • Zheng HuiEmail author
  • Quan Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11903)

Abstract

In this paper, a novel robust blind digital image water marking scheme is proposed by jointly using discrete wavelet transform (DWT), stationary wavelet transform (SWT), discrete cosine transform (DCT) and singular value decomposition (SVD). Firstly host image is decomposed by DWT and the obtained approximation coefficient is portioned into non-overlapping blocks. For each block, SWT is applied to affine redundant low frequency sub-bands which are subsequently processed by DCT and SVD. Watermark bit is embedded through quantifying the obtained greatest singular value. Extraction of proposed scheme is blind without any referring to the original image or watermark. Experimental result show that watermarked image is visually invisible of which peak signal to noise ratio (PSNR) is above 44 dB. Besides, by comparing with other DWT-SVD robust watermarking approaches, proposed scheme significantly outperforms in robustness against JPEG2000 compression. Performance of proposed scheme is also superior or competitive against other attacks such as rotation, filter or scaling.

Keywords

Blind image watermarking Discrete wavelet transform Stationary wavelet transform Singular value decomposition JPEG2000 

Notes

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 61372175) and National Key Laboratory Foundation (No. 2018SSFNKLSMT-13, No. HTKJ2019KL504006, No. HTKJ2019KL504007).

References

  1. 1.
    Muhammad, K., Sajjad, M., Mehmood, I., Rho, S., Baik, S.W.: A novel magic LSB substitution method (M-LSB-SM) using multi-level encryption and achromatic component of an image. Multimed. Tools Appl. 75, 14867–14893 (2016).  https://doi.org/10.1007/s11042-015-2671-9CrossRefGoogle Scholar
  2. 2.
    Sahu, A.K., Swain, G.: An optimal information hiding approach based on pixel value differencing and modulus function. Wirel. Pers. Commun. (2019).  https://doi.org/10.1007/s11277-019-06393-zCrossRefGoogle Scholar
  3. 3.
    Kieu, T.D., Chang, C.-C.: A steganographic scheme by fully exploiting modification directions. Expert Syst. Appl. 38, 10648–10657 (2011).  https://doi.org/10.1016/j.eswa.2011.02.122CrossRefGoogle Scholar
  4. 4.
    Chen, H., Ni, J., Hong, W., Chen, T.-S.: Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering. Signal Process. Image Commun. 46, 1–16 (2016).  https://doi.org/10.1016/j.image.2016.04.006CrossRefGoogle Scholar
  5. 5.
    Vinoth Kumar, C., Natarajan, V.: Hybrid local prediction error-based difference expansion reversible watermarking for medical images. Comput. Electr. Eng. 53, 333–345 (2016).  https://doi.org/10.1016/j.compeleceng.2015.11.033CrossRefGoogle Scholar
  6. 6.
    Wu, H., Huang, J.: Secure JPEG steganography by LSB+; matching and multi-band embedding. In: 2011 18th IEEE International Conference on Image Processing. pp. 2737–2740. IEEE, Brussels (2011).  https://doi.org/10.1109/ICIP.2011.6116235
  7. 7.
    Wu, H.-T., Liu, Y., Huang, J., Yang, X.-Y.: Improved steganalysis algorithm against motion vector based video steganography. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 5512–5516. IEEE, Paris (2014).  https://doi.org/10.1109/ICIP.2014.7026115
  8. 8.
    Cedillo-Hernandez, M., Garcia-Ugalde, F., Nakano-Miyatake, M., Perez-Meana, H.: Robust watermarking method in DFT domain for effective management of medical imaging. Signal Image Video Process. 9, 1163–1178 (2015).  https://doi.org/10.1007/s11760-013-0555-xCrossRefGoogle Scholar
  9. 9.
    Urvoy, M., Goudia, D., Autrusseau, F.: Perceptual DFT watermarking with improved detection and robustness to geometrical distortions. IEEE Trans. Inf. Forensics Secur. 9, 1108–1119 (2014).  https://doi.org/10.1109/TIFS.2014.2322497CrossRefGoogle Scholar
  10. 10.
    Hsu, L.-Y., Hu, H.-T.: Robust blind image watermarking using crisscross inter-block prediction in the DCT domain. J. Vis. Commun. Image Represent. 46, 33–47 (2017).  https://doi.org/10.1016/j.jvcir.2017.03.009CrossRefGoogle Scholar
  11. 11.
    Liu, S., Pan, Z., Song, H.: Digital image watermarking method based on DCT and fractal encoding. IET Image Process. 11, 815–821 (2017).  https://doi.org/10.1049/iet-ipr.2016.0862CrossRefGoogle Scholar
  12. 12.
    Patra, J.C., Phua, J.E., Bornand, C.: A novel DCT domain CRT-based watermarking scheme for image authentication surviving JPEG compression. Digit. Signal Process. 20, 1597–1611 (2010).  https://doi.org/10.1016/j.dsp.2010.03.010CrossRefGoogle Scholar
  13. 13.
    Keshavarzian, R., Aghagolzadeh, A.: ROI based robust and secure image watermarking using DWT and Arnold map. AEU Int. J. Electron. Commun. 70, 278–288 (2016).  https://doi.org/10.1016/j.aeue.2015.12.003CrossRefGoogle Scholar
  14. 14.
    Singh, A.K., Dave, M., Mohan, A.: Multilevel encrypted text watermarking on medical images using spread-spectrum in DWT domain. Wirel. Pers. Commun. 83, 2133–2150 (2015).  https://doi.org/10.1007/s11277-015-2505-0CrossRefGoogle Scholar
  15. 15.
    Makbol, N.M., Khoo, B.E., Rassem, T.H.: Security analyses of false positive problem for the SVD-based hybrid digital image watermarking techniques in the wavelet transform domain. Multimed. Tools Appl. 77, 26845–26879 (2018).  https://doi.org/10.1007/s11042-018-5891-yCrossRefGoogle Scholar
  16. 16.
    Vaishnavi, D., Subashini, T.S.: Robust and invisible image watermarking in RGB color space using SVD. Procedia Comput. Sci. 46, 1770–1777 (2015).  https://doi.org/10.1016/j.procs.2015.02.130CrossRefGoogle Scholar
  17. 17.
    Su, Q., Niu, Y., Zhao, Y., Pang, S., Liu, X.: A dual color images watermarking scheme based on the optimized compensation of singular value decomposition. AEU Int. J. Electron. Commun. 67, 652–664 (2013).  https://doi.org/10.1016/j.aeue.2013.01.009CrossRefGoogle Scholar
  18. 18.
    Zear, A., Singh, A.K., Kumar, P.: A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine. Multimed. Tools Appl. 77, 4863–4882 (2018).  https://doi.org/10.1007/s11042-016-3862-8CrossRefGoogle Scholar
  19. 19.
    Fazli, S., Moeini, M.: A robust image watermarking method based on DWT, DCT, and SVD using a new technique for correction of main geometric attacks. Optik. 127, 964–972 (2016).  https://doi.org/10.1016/j.ijleo.2015.09.205CrossRefGoogle Scholar
  20. 20.
    Dong, H., He, M., Qiu, M.: Optimized gray-scale image watermarking algorithm based on DWT-DCT-SVD and chaotic Firefly algorithm. In: 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. pp. 310–313. IEEE, Xi’an (2015).  https://doi.org/10.1109/CyberC.2015.15
  21. 21.
    Hu, H.-T., Hsu, L.-Y.: Exploring DWT–SVD–DCT feature parameters for robust multiple watermarking against JPEG and JPEG2000 compression. Comput. Electr. Eng. 41, 52–63 (2015).  https://doi.org/10.1016/j.compeleceng.2014.08.001CrossRefGoogle Scholar
  22. 22.
    Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 41, 541–551 (2016).  https://doi.org/10.1109/JOE.2015.2469915CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Xi’an Institute of Space Radio TechnologyXi’anChina

Personalised recommendations