Advertisement

Parallel Spectrum Reconstruction in Fourier Transform Imaging Spectroscopy Based on the Embedded System

  • Weikang ZhangEmail author
  • Desheng Wen
  • Zongxi Song
  • Xin Wei
  • Gang Liu
  • Zhixin Li
  • Tuochi Jiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11902)

Abstract

In this paper, we design a parallel-processing pipeline for spectrum reconstruction in Fourier transform imaging spectroscopy (FTIS), which works well with the embedded system, NVIDIA Jetson TX2. This embedded system has great performance in parallel computing and can be developed easily by programmers using CUDA C in a single development board. This is very important for data processing on satellite and mobile devices. On the other hand, because of the huge amount of interference data acquired by the Fourier transform spectrometer, traditional interference data processing mechanism is not efficient and time-saving. These data should be processed in a fast way for real time, especially on satellite, to save memory and bandwidth. We take advantage of parallel computing to enable higher efficiency and reduced operation time. Furthermore, traditional serial algorithms for processing interferograms on the ARMs are introduced for comparison. The experimental results show that our parallel spectrum reconstruction pipeline has much higher performance than the serial one, and for huge data, our parallel mechanism also achieves great result in high performance.

Keywords

Spectrum reconstruction GPU Embedded system High performance 

References

  1. 1.
    Grandmont, F., Drissen, L., Joncas, G.: Development of an imaging Fourier transform spectrometer for astronomy. Int. Soc. Opt. Photonics 4842, 392–402 (2003)Google Scholar
  2. 2.
    Lacan, A., et al.: A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation. Opt. Express 18(8), 8311–8331 (2010)CrossRefGoogle Scholar
  3. 3.
    Rafert, J.B., Sellar, R.G., Blatt, J.H.: Monolithic Fourier-transform imaging spectrometer. Appl. Opt. 34(31), 7228–7230 (1995)CrossRefGoogle Scholar
  4. 4.
    Dierking, M.P., Karim, M.A.: Solid-block stationary Fourier-transform spectrometer. Appl. Opt. 35(1), 84–89 (1996)CrossRefGoogle Scholar
  5. 5.
    Zhang, C., Zhao, B., Xiangli, B.: Wide-field-of-view polarization interference imaging spectrometer. Appl. Opt. 43(33), 6090–6094 (2004)CrossRefGoogle Scholar
  6. 6.
    Zhang, C., Xiangli, B., Zhao, B.C., Yuan, X.J.: A static polarization imaging spectrometer based on a Savart polariscope. Opt. Commun. 203(1–2), 21–26 (2002)CrossRefGoogle Scholar
  7. 7.
    Su, L., et al.: Spectrum reconstruction method for airborne temporally-spatially modulated Fourier transform imaging spectrometers. IEEE Trans. Geosci. Remote Sens. 52(6), 3720–3728 (2014)CrossRefGoogle Scholar
  8. 8.
    Zhang, C., Jian, X.: Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer. Opt. Lett. 35(3), 366–368 (2010)CrossRefGoogle Scholar
  9. 9.
    Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Newnes (2012)Google Scholar
  10. 10.
    Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional (2010)Google Scholar
  11. 11.
    Nvidia, C.: NVIDIA CUDA C programming guide. Nvidia Corporation 120(18), 8 (2011)Google Scholar
  12. 12.
    Griffiths, P.R., De Haseth, J.A.: Fourier Transform Infrared Spectrometry. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  13. 13.
    Zhang, W., Wen, D., Song, Z., et al.: Spectrum reconstruction in Fourier transform imaging spectroscopy based on high-performance parallel computing. Appl. Opt. 57(21), 5983–5991 (2018)CrossRefGoogle Scholar
  14. 14.
    Stoica, P.: Moses R L. Spectral analysis of signals (2005)Google Scholar
  15. 15.
    Mertz, L.: Auxiliary computation for Fourier spectrometry. Infrared Phys. 7(1), 17–23 (1967)CrossRefGoogle Scholar
  16. 16.
    Ting, X.: A method to improve the computing efficiency of mertz method in fourier transform spectroscopy. Acta Optica Sinica 3 (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Weikang Zhang
    • 1
    • 2
    Email author
  • Desheng Wen
    • 1
  • Zongxi Song
    • 1
  • Xin Wei
    • 1
    • 2
  • Gang Liu
    • 1
    • 2
  • Zhixin Li
    • 1
    • 2
  • Tuochi Jiang
    • 1
    • 2
  1. 1.Xi’an Institute of Optics and Precision MechanicsChinese Academy of SciencesXi’anChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations