Advertisement

Separating Skin Surface Reflection Component from Single Color Image

  • Shuchang XuEmail author
  • Zhengwei Yao
  • Yiwei Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11902)

Abstract

Due to the complex structure and rough surface of human skin, obtaining skin surface reflection is often difficult. To our knowledge, existing methods for measuring skin surface reflection are mostly device dependent. In this paper, we describe an approach that, unlike all previous methods, is able to extract the skin surface reflection component from a single color image without the need for any special device or prior information. First, we introduce a complete model for skin imaging incorporating Lambert-Beer law with the Dichromatic Reflection Mode, followed by extracting a pigment concentration map using the ICA algorithm. Finally we estimate the surface reflectivity in each color channel, and calculate the overall surface reflection component. Experiments are designed to verify the proposed algorithm and show good agreement with the ground truth obtained by special device.

Keywords

Surface reflection Dichromatic Reflection Mode Skin pigments 

References

  1. 1.
    Nayar, S.K., Fang, X.S., Boult, T.: Separation of reflection components using color and polarization. Int. J. Comput. Vis. 21(3), 163–186 (1996)CrossRefGoogle Scholar
  2. 2.
    Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10, 210–218 (1985)CrossRefGoogle Scholar
  3. 3.
    Tan, R.T., Nishino, K., Ikeuchi, K.: Separating reflection components based on chromaticity and noise analysis. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 26(10), 1373–1379 (2004)CrossRefGoogle Scholar
  4. 4.
    Krishnaswamy, A., Baranoski, G.: A biophysically-based spectral model of light interaction with human skin. Comput. Graph. Forum 23, 331–340 (2004)CrossRefGoogle Scholar
  5. 5.
    Weyrich, T., Matusik, W., Pfister, H., Ngan, A., Gross, M.: Measuring skin reflectance and subsurface scattering. Technical report. TR2005-046, Mitsubishi Electric Research Laboratories (MERL) (2005)Google Scholar
  6. 6.
    Pat, H., Wolfgang, K.: Reflection from layered surfaces due to subsurface scattering. In: SIGGRAPH, pp. 165–174 (1993)Google Scholar
  7. 7.
    So Ling, C., Ling, L.: A multi-layered reflection model of natural human skin. In: Proceedings of Computer Graphics, pp. 249–256 (2001)Google Scholar
  8. 8.
    Wang, L., Jacques, S.L., Zheng, L.: Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed. 47(2), 131–146 (1995)CrossRefGoogle Scholar
  9. 9.
    Doi, M., Tominaga, S.: Spectral estimation of human skin color using the Kubelka-Munk theory. In: Eschbach, R., Marcu, G.G. (eds.), Color Imaging VIII: Processing, Hardcopy, and Applications, Proceedings of SPIE-IS&T Electronic Imaging, SPIE, vol. 5008, pp. 221–228, Santa Clara, California, USA, January (2003)Google Scholar
  10. 10.
    Donner, C., Jensen, H.W.: Light diffusion in multilayered translucent materials. ACM Trans. Graph. 24(3), 1032–1039 (2005)CrossRefGoogle Scholar
  11. 11.
    Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Computer Graphics, SIGGRAPH 2000 Proceedings, pp. 145–156 (2000)Google Scholar
  12. 12.
    Weyrich, T., Matusik, W., Pfister, H., et al.: Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph. 25, 1013–1024 (2006)CrossRefGoogle Scholar
  13. 13.
    Angelopoulou, E.: Understanding the color of human skin. In: SPIE Conference on Human Vision and Electronic Imaging VI, SPIE, vol. 4299, pp. 243–251 (2001)Google Scholar
  14. 14.
    Matsubara, A.: Differences in the surface and subsurface reflection characteristics of facial skin by age group. Skin Res. Technol. 18, 29–35 (2011)CrossRefGoogle Scholar
  15. 15.
    Dawson, J.B., Barker, D.J., Ellis, D.J., et al.: A theoretical and experimental study of light absorption and scattering by in vivo skin. Phys. Med. Biol. 25, 695–709 (1980)CrossRefGoogle Scholar
  16. 16.
    Finlayson, G.D., Drew, M.S., Lu, C.: Intrinsic images by entropy minimization. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 582–595. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24672-5_46CrossRefGoogle Scholar
  17. 17.
    Tsumura, N., Ojima, N., Sato, K., et al.: Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. In: Proceedings of SIGGRAPH, pp. 770–779 (2003)Google Scholar
  18. 18.
    Krishnaswamy, A., Baranoski, G.V.G.: A study on skin optics. Technical report CS-2004-01, University of Waterloo, Canada, January (2004)Google Scholar
  19. 19.
    Tsumura, N., Haneishi, H., Miyake, Y.: Independent component analysis of skin color image. J. Opt. Soc. Am. 16(9), 2169–2176 (1999)CrossRefGoogle Scholar
  20. 20.
    Anderson, R.R., Pappish, J.A.: The optics of human skin. J. Invest. Dermatol. 77(1), 13–19 (1981)CrossRefGoogle Scholar
  21. 21.
    Zijlstra, W.G., Buursma, A., Meeuwsen-van der Roest, W.P.: Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin. Chem. 37(9), 1633–1638 (1991)Google Scholar
  22. 22.
    Xu, S., Ye, X., Wu, Y., et al.: Automatic skin decomposition based on single image. Comput. Vis. Image Underst. 110(1), 1–6 (2008)CrossRefGoogle Scholar
  23. 23.
    Clemenceau, P., Breugnot, S., Pounet, B.: In vivo quantitative evaluation of gloss. Cosmet. Toiletries 119, 71–78 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Information Science and EngineeringHangzhou Normal UniversityHangzhouChina
  2. 2.www.Learnings.aiBeijingChina

Personalised recommendations