Advertisement

Overview on Vision-Based 3D Object Recognition Methods

  • Tianzhen Dong
  • Xiao Qi
  • Qing Zhang
  • Wenju Li
  • Liang XiongEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11902)

Abstract

In the fields of computer vision and pattern recognition, 3D object recognition has always been one of the most challenging problems, and has become an important direction of current image recognition research. This paper introduces the main methods of 3D object recognition and its key technologies comprehensively. It compares the advantages and disadvantages of various methods, and hopes to have a more comprehensive learning and grasp of 3D object recognition, and further clarify the future research direction.

Keywords

Computer vision 3D object recognition Overview 

References

  1. 1.
    Ying, C., Ji, Z., Hua, C.: 3-D model matching based on distributed estimation algorithm. In: 2009 Chinese Control and Decision Conference, CCDC 2009, pp. 5063–5067. IEEE (2009)Google Scholar
  2. 2.
    Qian, X., Ye, C.: 3D object recognition by geometric context and Gaussian-mixture-model-based plane classification. In: IEEE International Conference on Robotics and Automation. IEEE (2014)Google Scholar
  3. 3.
    Lin, Y.D., He, H.J., Chen, F., et al.: A rigid object detection model based on geometric sparse representation of profile and its hierarchical detection algorithm. Acta Automatica Sinica 41(4), 843–853 (2015)Google Scholar
  4. 4.
    Ding, B., Wen, G.: Target reconstruction based on 3-D scattering center model for robust SAR ATR. IEEE Trans. Geosci. Remote Sens. 56, 3772–3785 (2018)CrossRefGoogle Scholar
  5. 5.
    Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: International Conference on Neural Information Processing Systems, pp. 2366–2374. MIT Press (2014)Google Scholar
  6. 6.
    Lee, J., Kim, Y., Lee, S., et al.: High-quality depth estimation using an exemplar 3D model for stereo conversion. IEEE Trans. Visual Comput. Graph. 21(7), 835–847 (2015)CrossRefGoogle Scholar
  7. 7.
    Miao, Y.W., Feng, X.H., Yu, L.J., et al.: 3D building interactive progressive modeling based on single image. J. Comput. Aided Des. Comput. Graph. 28(09), 1410–1419 (2016)Google Scholar
  8. 8.
    Widya, A.R., Torii, A., Okutomi, M.: Structure from motion using dense CNN features with keypoint relocalization. IPSJ Trans. Comput. Vis. Appl. 10(1), 6 (2018)CrossRefGoogle Scholar
  9. 9.
    Wu, C.: Towards linear-time incremental structure from motion. In: International Conference on 3D Vision, pp. 127–134. IEEE Computer Society (2013)Google Scholar
  10. 10.
    Zou, G.F., Fu, G.X., Li, H.T.: A survey of multi-pose face recognition. Pattern Recogn. Artif. Intell. 28(7), 613–625 (2015)Google Scholar
  11. 11.
    Chen, G., Deng, C.W.: Research on 3D object recognition based on KPCA-SVM. Comput. CD Softw. Appl. 07, 77–78 (2012)Google Scholar
  12. 12.
    Gedam, A.G., Shikalpure, S.G.: Direct kernel method for machine learning with support vector machine. In: International Conference on Intelligent Computing. IEEE (2018)Google Scholar
  13. 13.
    Zhan, N.: Three-dimensional object recognition method based on multiple features and support vector machine. Comput. Simul. 30(3), 375–380 (2013)Google Scholar
  14. 14.
    Xu, S.: Research on three dimensional object recognition. University of Electronic Science and Technology of China (2010)Google Scholar
  15. 15.
    Zhang, H.H.: Study on three-dimensional recognition of the spatial object based on optical correlation pattern recognition. Hubei University of Technology (2009)Google Scholar
  16. 16.
    Vallmitjana, S., Juvells, I.P., Carnicer, A., et al.: Optical correlation from projections of 3D objects. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 81, pp. 148–169 (2017)Google Scholar
  17. 17.
    Aloraiqat, A.M., Kostyukova, N.S.: A modified image comparison algorithm using histogram features (2018)Google Scholar
  18. 18.
    Tyagi, V.: Texture feature. Content-Based Image Retrieval (2017)Google Scholar
  19. 19.
    Guo, Y.L., Lu, M., Tan, Z.G., Wan, J.W.: Survey of local feature extraction on range image. Pattern Recogn. Artif. Intell. 25(05), 783–791 (2012)Google Scholar
  20. 20.
    Xiao, Q., Luo, Y., Hu, X.: Object detection based on local feature matching and segmentation. In: IEEE International Conference on Signal Processing. IEEE (2012)Google Scholar
  21. 21.
    Zhou, D.B., Huo, L.J., Gang, L.I., et al.: Automatic object recognition based on local invariant features. Acta Photonica Sinica 44(2) (2015)Google Scholar
  22. 22.
    Kechagias-Stamatis, O., Aouf, N., Gray, G., et al.: Local feature based automatic object recognition for future 3D active homing seeker missiles. Aerosp. Sci. Technol. 73, 309–317 (2018)CrossRefGoogle Scholar
  23. 23.
    Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2–3), 348–361 (2010)CrossRefGoogle Scholar
  24. 24.
    Wei, X.: The research of image matching method and application based on local feature detection. Anhui University (2015)Google Scholar
  25. 25.
    Xie, J., Xu, Z., Liu, Y., et al.: A remote sensing image object recognition method based on SIFT algorithm. In: International Conference on Mechatronics, Robotics and Automation (2015)Google Scholar
  26. 26.
    Guan, F., Liu, X., Feng, W., et al.: Multi object recognition based on SURF algorithm. In: International Congress on Image and Signal Processing, pp. 448–453. IEEE (2013)Google Scholar
  27. 27.
    Karthik, O.S., Varun, D., Ramasangu, H.: Localized Harris-FAST interest point detector. In: India Conference, pp. 1–6. IEEE (2017)Google Scholar
  28. 28.
    Tahery, S., Drew, M.S.: A novel colour Hessian and its applications. Electron. Imaging (2017)Google Scholar
  29. 29.
    Jebril, N.A., Al-Zoubi, H.R., Al-Haija, Q.A.: Recognition of handwritten arabic characters using histograms of oriented gradient (HOG). Pattern Recogn. Image Anal. 28(2), 321–345 (2018)CrossRefGoogle Scholar
  30. 30.
    Fan, H., Cosman, P.C., Hou, Y., et al.: High speed railway fastener detection based on line local binary pattern. IEEE Signal Process. Lett. 25, 788–792 (2018)CrossRefGoogle Scholar
  31. 31.
    Yong-Chao, W., Feng, C., Xia, Z., et al.: 3D target recognition based on invariant angle contour. J. Sichuan Univ. (Nat. Sci. Edn.) (2017)Google Scholar
  32. 32.
    Shah, S.A.A., Bennamoun, M., Boussaid, F.: Keypoints-based surface representation for 3D modeling and 3D object recognition. Pattern Recogn. 64, 29–38 (2017)CrossRefGoogle Scholar
  33. 33.
    Fisher, R.B., Breckon, T.P., Dawson-Howe, K., et al.: Dictionary of Computer Vision and Image Processing. Wiley, New York (2014)Google Scholar
  34. 34.
    Kaehler, A., Bradski, G.: Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library. O’Reilly Media Inc., Sebastopol (2016)Google Scholar
  35. 35.
    Wang, Y., Huang, J., Liu, Y., et al.: Simulation of lidar imaging for space object. Infrared Laser Eng. 45(9) (2016)Google Scholar
  36. 36.
    Li, Y.: Research on key techniques of 3D surface reconstruction based on depth camera. Zhejiang University (2015)Google Scholar
  37. 37.
    Zhuang, Z.Y., Zhang, J., Sun, G.F.: Extended point feature histograms for 3D point cloud representation. J. Natl. Univ. Defense Technol. 38(6), 124–129 (2016)Google Scholar
  38. 38.
    Fang, X., Yu, R.X.: Grid-based statistical model for 3D object recognition. Comput. Mod. 2014(4), 24–28 (2014)Google Scholar
  39. 39.
    Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01252-6_4CrossRefGoogle Scholar
  40. 40.
    Hao, W., Wang, Y.H., Ning, X.J., et al.: Survey of 3D object recognition for point clouds. Comput. Sci. 44(09), 11–16 (2017)Google Scholar
  41. 41.
    Qi, C.R., Su, H., Mo, K., et al.: PointNet: deep learning on point sets for 3D classification and segmentation (2016)Google Scholar
  42. 42.
    Qi, C.R., Yi, L., Su, H., et al.: PointNet++: deep hierarchical feature learning on point sets in a metric space (2017)Google Scholar
  43. 43.
    Li, J., Chen, B.M., Lee, G.H.: SO-Net: self-organizing network for point cloud analysis (2018)Google Scholar
  44. 44.
    Wang, Y., Sun, Y., Liu, Z., et al.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 146 (2018)Google Scholar
  45. 45.
    Liu, Y., Fan, B., Xiang, S., et al.: Relation-shape convolutional neural network for point cloud analysis (2019)Google Scholar
  46. 46.
    Bisht, A., Kumar, R.: An efficient multi-level clustering approach using improved ant colony optimization. In: International Conference on Advances in Computing, Communication and Automation, pp. 1–5. IEEE (2018)Google Scholar
  47. 47.
    Xia, X.Y., Zhou, Y.R.: Advances in theoretical research of ant colony optimization. CAAI Trans. Intell. Syst. 11(01), 27–36 (2016)Google Scholar
  48. 48.
    Zhang, J., He, K., Zheng, X., et al.: An ant colony optimization algorithm for image edge detection. In: International Conference on Artificial Intelligence and Computational Intelligence, pp. 215–219. IEEE (2010)Google Scholar
  49. 49.
    Jain, N.K., Nangia, U., Jain, J.: A review of particle swarm optimization. J. Inst. Eng. 99, 407–411 (2018)Google Scholar
  50. 50.
    Wang, H., Sun, H., Li, C., et al.: Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci. 223, 119–135 (2013)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Zhang, L.H., Dou, Z.Q., Sun, G.L.: An improved artificial fish-swarm algorithm using cluster analysis. In: Qiao, F., Patnaik, S., Wang, J. (eds.) ICMIR 2017. AISC, vol. 690, pp. 49–54. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-65978-7_8CrossRefGoogle Scholar
  52. 52.
    Ma, X.-M., Liu, N.: Improved artificial fish-swarm algorithm based on adaptive vision for solving the shortest path problem. J. Commun. (2014)Google Scholar
  53. 53.
    Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 9(1), 132–141 (2013)CrossRefGoogle Scholar
  54. 54.
    Jia, C., Fan, Y.: Application of immune genetic algorithm in image segmentation. Beijing Surv. Mapp. (2018)Google Scholar
  55. 55.
    Shi, J., Su, Y.D., Xie, M.: Research on application of IGA (immune genetic algorithm) to the solution of Course-Timetabling Problem. In: International Conference on Computer Science and Education, pp. 1105–1109. IEEE (2009)Google Scholar
  56. 56.
    Tao, Y., Zhou, J.: Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking. Comput. Electron. Agric. 142, 388–396 (2017)CrossRefGoogle Scholar
  57. 57.
    Awange, J.L., Paláncz, B., Lewis, R.H., et al.: Simulated annealing (2018)Google Scholar
  58. 58.
    Shieh, H.L., Kuo, C.C., Chiang, C.M.: Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl. Math. Comput. 218(8), 4365–4383 (2011)zbMATHGoogle Scholar
  59. 59.
    Chen, S., Ren, L., Xin, F.: Reactive power optimization based on Particle Swarm Optimization and Simulated Annealing cooperative algorithm. In: Control Conference, pp. 7210–7215. IEEE (2012)Google Scholar
  60. 60.
    Mann, M., Sangwan, O.P., Tomar, P., et al.: Automatic goal-oriented test data generation using a genetic algorithm and simulated annealing. In: International Conference - Cloud System and Big Data Engineering, pp. 83–87. IEEE (2016)Google Scholar
  61. 61.
    Rong, X.J.: Research on hybrid task scheduling algorithm simulation of ant colony algorithm and simulated annealing algorithm in virtual environment. In: International Conference on Computer Science and Education, pp. 562–565. IEEE (2015)Google Scholar
  62. 62.
    Schmidhuber, J.: Deep learning in neural networks. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tianzhen Dong
    • 1
  • Xiao Qi
    • 1
  • Qing Zhang
    • 1
  • Wenju Li
    • 1
  • Liang Xiong
    • 2
    Email author
  1. 1.School of Computer Science and Information EngineeringShanghai Institute of TechnologyShanghaiChina
  2. 2.School of HumanitiesShanghai University of Finance and EconomicsShanghaiChina

Personalised recommendations