Blending Polyhedral Edge Clusters

  • Pei ZhouEmail author
  • Wen-Han Qian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11902)


This paper presents an efficient method for blending edge clusters on polyhedra, where an edge cluster means a set of polyhedral edges connected together by polyhedral vertices. It extends the vertex-first algorithm in (P. Zhou, W.H. Qian, A vertex-first parametric algorithm for polyhedron blending, Computer-Aided Design 41 812–824(2009)) from a single vertex to several vertices with relevant edges together, so that a tensor product or multisided Bézier surface can blend an edge cluster of diverse configurations. This is achieved simply by placing the control points of the Bézier surface on the vertices and edges properly. If the clusters can not cover the whole polyhedron, the left C0 corner points can be handled by Hartmann method. Thus the complete Gg (geometrically continuous up to order g) blending surfaces can be produced faster. Their shapes can be adjusted by utilizing certain freedoms of placing the control points. The implementation of this method is demonstrated with various practical examples.


Multivariate bernstein polynomials Multisided bézier surfaces S-patches Vertex blending Geometric continuity 


  1. 1.
    Braid, I.C.: Non-local blending of boundary models. Comput. Aided Des. 29, 89–100 (1997)CrossRefGoogle Scholar
  2. 2.
    Kosters, M.: Quadratic blending surfaces for complex corners. Vis. Comput. 5, 134–146 (1989)CrossRefGoogle Scholar
  3. 3.
    Mou, H.N., Zhao, G.H., Wang, Z.R., Su, Z.X.: Simultaneous blending of convex polyhedra by algebraic splines. Comput. Aided Des. 39, 1003–1011 (2007)CrossRefGoogle Scholar
  4. 4.
    Hartmann, E.: Implicit Gn-blending of vertices. Comput. Aided Geom. Des. 18, 267–285 (2001)CrossRefGoogle Scholar
  5. 5.
    Choi, B.K., Ju, S.Y.: Constant-radius blending in surface modeling. Comput. Aided Des. 21, 213–220 (1989)CrossRefGoogle Scholar
  6. 6.
    Varady, T.: Overlap patches: a new scheme for interpolating curve networks with n-sided regions. Comput. Aided Geom. Des. 8, 7–27 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Warren, J.: Creating multisided rational bézier surfaces using base points. ACM Trans. Graph. 11, 127–139 (1992)CrossRefGoogle Scholar
  8. 8.
    Loop, C., DeRose, T.: A multisided generalization of Bézier surfaces. ACM Trans. Graph. 8, 204–234 (1989)CrossRefGoogle Scholar
  9. 9.
    Loop, C., DeRose, T.: Generalized B-spline surfaces of arbitrary topology. Comput. Graph. (ACM) 24, 347–356 (1990)CrossRefGoogle Scholar
  10. 10.
    Zhou, P., Qian, W.H.: Polyhedral vertex blending with setbacks using rational S-patches. Comput. Aided Geom. Des. 27, 233–244 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Szilvasi-Nagy, M.: Flexible rounding operation for polyhedra. Comput. Aided Des. 23, 629–633 (1991)CrossRefGoogle Scholar
  12. 12.
    Gregory, J.A., Zhou, J.W.: Filling polygonal holes with bicubic patches. Comput. Aided Geom. Des. 11, 391–410 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Varady, T., Rockwood, A.: Geometric construction for setback vertex blending. Comput. Aided Des. 29, 413–425 (1997)CrossRefGoogle Scholar
  14. 14.
    Hsu, K.L., Tsay, D.M.: Corner blending of free-form n-sided holes. IEEE Comput. Graph. Appl. 72–78 (1998)Google Scholar
  15. 15.
    Piegl, L.A., Tiller, W.: Filling n-sided regions with NURBS patches. Vis. Comput. 15, 77–89 (1999)CrossRefGoogle Scholar
  16. 16.
    Yang, Y.J., Yong, J.H., Zhang, H., Paul, J.C., Sun, J.G.: A rational extension of Piegl’s method for filling n-sided holes. Comput. Aided Des. 38, 1166–1178 (2006)CrossRefGoogle Scholar
  17. 17.
    Zhou, P., Qian, W.H.: A vertex-first parametric algorithm for polyhedron blending. Comput. Aided Des. 41, 812–824 (2009)CrossRefGoogle Scholar
  18. 18.
    Krasauskas, R.: Toric surface patches. Adv. Comput. Math. 17, 89–113 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goldman, R.: Multisided arrays of control points for multisided Bézier patches. Comput. Aided Geom. Des. 21, 243–261 (2004)CrossRefGoogle Scholar
  20. 20.
    Hartmann, E.: Parametric Gn blending of curves and surfaces. Vis. Comput. 17, 1–13 (2001)CrossRefGoogle Scholar
  21. 21.
    Song, Q.Z., Wang, J.Z.: Generating Gn parametric blending surfaces based on partial reparameterization of base surfaces. Comput. Aided Des. 39, 953–963 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Beijing Institute of Astronautical Systems EngineeringBeijingChina
  2. 2.Robotics Institute, School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations