Advertisement

Topology Optimization of Road Networks

  • Alexander KrylatovEmail author
  • Victor Zakharov
  • Tero Tuovinen
Chapter
Part of the Springer Tracts on Transportation and Traffic book series (STTT, volume 15)

Abstract

In this chapter is mainly devoted to the capacity allocation problem as one of the most significant for road network topology optimization. A brief review on problems concerning network design and relevant fields is given in the Sect. 6.1. Capacity allocation control for a general topology network in the form of a mathematical problem is formulated in the Sect. 6.2. The Sect. 6.3 is devoted to solving the capacity allocation problem for a single-commodity linear network of non-interfering routes. The solution is obtained explicitly that allows to make practically substantial conclusions. The Sect. 6.4 addresses the problem of optimal capacity allocation control under multi-modal traffic flows. The multi-modality influence on optimal control strategy for capacity allocation is also discussed.

References

  1. 1.
    Migdalas A (1995) Bilevel programming in traffic planning: models, methods and challenge. J Glob Optim 7(4):381–405MathSciNetCrossRefGoogle Scholar
  2. 2.
    Stackelberg H (1952) The theory of the market economy. Oxford University Press, LondonGoogle Scholar
  3. 3.
    Mazalov VV (2014) Mathematical game theory and applications. WileyGoogle Scholar
  4. 4.
    Simaan M, Cruz JB Jr (1973) On the Stackelberg strategy in nonzero-sum games. J Optim Theory Appl 11:533–555MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cascetta E, Gallo M, Montella B (2006) Models and algorithms for the optimization of signal settings onurban networks with stochastic assignment. Ann Oper Res 144(1):301–328MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chiou S (2008) A hybrid approach for optimal design of signalized road network. Appl Math Model 32(2):195–207CrossRefGoogle Scholar
  7. 7.
    Meneguzzer C (1995) An equilibrium route choice model with explicit treatment of the effect of intersections. Transp Res Part B 29(5):329–356CrossRefGoogle Scholar
  8. 8.
    Wey WM (2000) Model formulation and solution algorithm of traffic signal control in an Urban network. Comput Environ Urban Syst 24(4):355–377CrossRefGoogle Scholar
  9. 9.
    Wong SC, Yang C (1999) An iterative group-based signal optimization scheme for traffic equilibrium networks. J Adv Transp 33(2):201–217CrossRefGoogle Scholar
  10. 10.
    Farahani RZ, Miandoabchi E, Szeto WY, Rashidi H (2013) A review of Urban transportation network design problems. Eur J Oper Res 229:281–302MathSciNetCrossRefGoogle Scholar
  11. 11.
    Daganzo CF, Sheffi Y (1977) On stochastic models of traffic assignment. Transp Sci 11(3):253–274CrossRefGoogle Scholar
  12. 12.
    Chen M, Alfa AS (1991) A network design algorithm using astochastic incremental traffic assignment approach. Transp Sci 25(3):215–224CrossRefGoogle Scholar
  13. 13.
    Drezner Z, Wesolowsky GO (1997) Selecting an optimum configuration of one-way and two-way routes. Transp Sci 31(4):386–394CrossRefGoogle Scholar
  14. 14.
    LeBlanc LJ, Boyce DE (1986) A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows. Transp Res Part B 20(3):259–265MathSciNetCrossRefGoogle Scholar
  15. 15.
    Long J, Gao Z, Zhang H, Szeto WY (2010) A turning restriction design problem in Urban road networks. Eur J Oper Res 206(3):569–578MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gao Z, Sun H, Zhang H (2007) A globally convergent algorithm for transportation continuous network design problem. Optim Eng 8(3):241–257MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gao Z, Wu J, Sun H (2005) Solution algorithm for the bi-level discrete network design problem. Transp Res Part B 39(6):479–495CrossRefGoogle Scholar
  18. 18.
    Zhang H, Gao Z (2009) Bilevel programming model and solution method for mixed transportation network design problem. J Syst Sci Complex 22:446–459MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lo HK, Szeto WY (2009) Time-dependent transport network design under cost-recovery. Transp Res Part B 43(1):142–158CrossRefGoogle Scholar
  20. 20.
    Szeto WY, Jaber X, O’Mahony M (2010) Time-dependent discrete network design frameworks considering land use. Comput-Aided Civil Infrastruct Eng 25(6):411–426CrossRefGoogle Scholar
  21. 21.
    Szeto WY, Lo HK (2008) Time-dependent transport network improvement and tolling strategies. Transp Res Part A 42(2):376–391Google Scholar
  22. 22.
    Marcotte P, Marquis G (1992) Efficient implementation of heuristics for the continuous network design problem. Ann Oper Res 34(1):163–176CrossRefGoogle Scholar
  23. 23.
    Marcotte P (1986) Network design problem with congestion effects: a case of bilevel programming. Math Program 34(2):142–162MathSciNetCrossRefGoogle Scholar
  24. 24.
    Suh S, Kim T (1992) Solving nonlinear bilevel programming models of the equilibrium network design problem: a comparative review. Ann Oper Res 34(1):203–218MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ziyou G, Yifan S (2002) A reserve capacity model of optimal signal control with user-equilibrium route choice. Transp Res Part B 36(4):313–323CrossRefGoogle Scholar
  26. 26.
    Mathew TV, Sharma S (2009) Capacity expansion problem for large Urban transportation networks. J Transp Eng 135(7):406–415CrossRefGoogle Scholar
  27. 27.
    Miandoabchi E, Farahani RZ (2010) Optimizing reserve capacity of Urban road networks in a discrete network design problem. Adv Eng Softw 42(12):1041–1050CrossRefGoogle Scholar
  28. 28.
    Poorzahedy H, Rouhani OM (2007) Hybrid meta-heuristic algorithms for solving network design problem. Eur J Oper Res 182(2):578–596MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wardrop JG (1952) Some theoretical aspects of road traffic research. Proc Inst Civil Eng 2:325–378Google Scholar
  30. 30.
    Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall Inc., Englewood Cliffs, NJGoogle Scholar
  31. 31.
    Patriksson M (2015) The traffic assignment problem: models and methods. Dover Publications Inc., Mineola, NYGoogle Scholar
  32. 32.
    Ben-Ayed O, Boyce DE, Blair CE III (1988) Ageneral bilevel linear programming formulation of the network design problem. Transp Res Part B 22(4):311–318CrossRefGoogle Scholar
  33. 33.
    Luo Z, Pang J, Ralph DC (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  34. 34.
    LeBlanc LJ, Morlok EK, Pierskalla WP (1975) An efficient approach to solving the road network equilibrium traffic assignment problem. Transp Res 9:309–318CrossRefGoogle Scholar
  35. 35.
    Krylatov AY (2017) Optimal strategies for road network’s capacity allocation. Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 13(2):182–192MathSciNetGoogle Scholar
  36. 36.
    Krylatov AY (2014) Optimal strategies for traffic management in the network of parallel routes. Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 2:121–130Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Transport ProblemsRussian Academy of SciencesSaint PetersburgRussia
  2. 2.Faculty of Applied Mathematics and Control ProcessesSaint Petersburg State UniversitySaint PetersburgRussia
  3. 3.Faculty of Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations