Advertisement

Efficiency Issues and Solutions in Blockchain: A Survey

  • Atabaev Odiljon
  • Keke GaiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11911)

Abstract

With the growing number of blockchain-based solutions in a few industries, we have moved to the next level of digital privacy. Meanwhile, several concerns related to transaction speed, data size, tracking information on public distributed ledgers faced to us. Time constraints and data overflow will lead to high financial expenses. In this paper, we address the efficiency issues of blockchain technology by reviewing recent significant work. First, we list the main challenges facing for efficiency. Then, we survey prior methods to handle efficiency issues studied by authors. Finally, we will discuss open challenges and conclude the work. This work can be helpful to determine future work directions.

Keywords

Blockchain Efficiency Consensus Data overhead 

Notes

Acknowledgments

Authors would like to thank Ministry of Education of People’s Republic of China and Ministry of Higher and Secondary Specialized Education of Republic of Uzbekistan. This work also is partially supported by National Natural Science Foundation of China grants (# 61972034), Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201803) and Beijing Institute of Technology Research Fund Program for Young Scholars (Dr. Keke Gai).

References

  1. 1.
    Guan, Z., Zhang, Y., Zhu, L., Wu, L., Yu, S.: EFFECT: an efficient flexible privacy-preserving data aggregation scheme with authentication in smart grid. Sci. China Inf. Sci. 62(3), 32103 (2019)CrossRefGoogle Scholar
  2. 2.
    Duan, Y., Sun, X., Che, H., Cao, C., Li, Z., Yang, X.: Modelling data, information and knowledge for security protection of hybrid IoT and edge resources. IEEE Access PP(99), 1 (2019)Google Scholar
  3. 3.
    Aitzhan, N., Svetinovic, D.: Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secur. Comput. 15(5), 840–852 (2016) CrossRefGoogle Scholar
  4. 4.
    Gai, K., Qiu, M., Xiong, Z., Liu, M.: Privacy-preserving multi-channel communication in edge-of-things. Futur. Gener. Comput. Syst. 85, 190–200 (2018)CrossRefGoogle Scholar
  5. 5.
    Rizvi, S., Ryoo, J., Liu, Y., Zazworsky, D., Cappeta, A.: A centralized trust model approach for cloud computing. In: 2014 23rd Wireless and Optical Communication Conference, Newark, New Jersey, USA, pp. 1–6. IEEE (2014)Google Scholar
  6. 6.
    Song, Z., et al.: Processing optimization of typed resources with synchronized storage and computation adaptation in fog computing. Wirel. Commun. Mob. Comput. 2018, 13 (2018) Google Scholar
  7. 7.
    Gai, K., Qiu, M., Zhao, H.: Privacy-preserving data encryption strategy for big data in mobile cloud computing. IEEE Trans. Big Data PP(99), 1 (2017)CrossRefGoogle Scholar
  8. 8.
    Gai, K., Qiu, M., Sun, X.: A survey on FinTech. J. Netw. Comput. Appl. 103, 262–273 (2018)CrossRefGoogle Scholar
  9. 9.
    Gai, K., Qiu, M., Ming, Z., Zhao, H., Qiu, L.: Spoofing-jamming attack strategy using optimal power distributions in wireless smart grid networks. IEEE Trans. Smart Grid 8(5), 2431–2439 (2017)CrossRefGoogle Scholar
  10. 10.
    Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-38424-3_32CrossRefGoogle Scholar
  11. 11.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  12. 12.
    Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016)CrossRefGoogle Scholar
  13. 13.
    Kang, J., Yu, R., Huang, X., Maharjan, S., Zhang, Y., Hossain, E.: Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Trans. Ind. Inform. 13(6), 3154–3164 (2017)CrossRefGoogle Scholar
  14. 14.
    Zhang, J., Xue, N., Huang, X.: A secure system for pervasive social network-based healthcare. IEEE Access 4, 9239–9250 (2016)CrossRefGoogle Scholar
  15. 15.
    Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Netw. 32(3), 78–83 (2018)CrossRefGoogle Scholar
  16. 16.
    Gai, K., Wu, Y., Zhu, L., Qiu, M., Shen, M.: Privacy-preserving energy trading using consortium blockchain in smart grid. IEEE Trans. Ind. Inform. 5(16), 3548–3558 (2019)CrossRefGoogle Scholar
  17. 17.
    Li, H., Gai, K., Fang, Z., Zhu, L., Xu, L., Jiang, P.: Blockchain-enabled data provenance in cloud datacenter reengineering. In: Proceedings of the 2019 ACM International Symposium on Blockchain and Secure Critical Infrastructure, pp. 47–55. ACM (2019)Google Scholar
  18. 18.
    Gai, K., Qiu, L., Chen, M., Zhao, H., Qiu, M.: SA-EAST: security-aware efficient data transmission for ITS in mobile heterogeneous cloud computing. ACM Trans. Embed. Comput. Syst. 16(2), 60 (2017)CrossRefGoogle Scholar
  19. 19.
    Fu, Y., Zhu, J.: Big production enterprise supply chain endogenous risk management based on blockchain. IEEE Access 7, 15310–15319 (2019)CrossRefGoogle Scholar
  20. 20.
    Uddin, M., Stranieri, A., Gondal, I., Balasubramanian, V.: Continuous patient monitoring with a patient centric agent: a block architecture. IEEE Access 6, 32700–32726 (2018)CrossRefGoogle Scholar
  21. 21.
    Liu, M., Yu, F., Teng, Y., Leung, V., Song, M.: Distributed resource allocation in blockchain-based video streaming systems with mobile edge computing. IEEE Trans. Wirel. Commun. 18(1), 695–708 (2018)CrossRefGoogle Scholar
  22. 22.
    Tsai, W., Bai, X., Yu, L.: Design issues in permissioned blockchains for trusted computing. In: 2017 IEEE Symposium on Service-Oriented System Engineering, San Francisco, USA, pp. 153–159. IEEE (2017)Google Scholar
  23. 23.
    Xu, Y., Huang, Y.: MWPoW-multi-winner proof of work consensus protocol: an immediate block-confirm solution and an incentive for common devices to join blockchain. In: 2018 IEEE International Conference on Parallel and Distributed Processing with Applications, Ubiquitous Computing and Communications, Big Data and Cloud Computing, Social Computing and Networking, Sustainable Computing and Communications, Melbourne, Australia, pp. 964–971. IEEE (2018)Google Scholar
  24. 24.
  25. 25.
    Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, pp. 583–598. IEEE (2018)Google Scholar
  26. 26.
    Zaman, M., Shen, T., Min, M.: Proof of sincerity: a new lightweight consensus approach for mobile blockchains. In: 2019 16th IEEE Annual Consumer Communications and Networking Conference, Las Vegas, NV, USA, pp. 1–4. IEEE (2019)Google Scholar
  27. 27.
    Sakakibara, Y., Tokusashi, Y., Morishima, S., Matsutani, H.: Accelerating blockchain transfer system using FPGA-based NIC. In: 2018 IEEE International Conference on Parallel and Distributed Processing with Applications, Ubiquitous Computing and Communications, Big Data and Cloud Computing, Social Computing and Networking, Sustainable Computing and Communications, Melbourne, Australia, pp. 171–178. IEEE (2018)Google Scholar
  28. 28.
    Bai, L., Hu, M., Liu, M., Wang, J.: BPIIoT: a light-weighted blockchain-based platform for industrial IoT. IEEE Access 7, 58381–58393 (2019)CrossRefGoogle Scholar
  29. 29.
    Zhou, T., Li, X., Zhao, H.: DLattice: a permission-less blockchain based on DPoS-BA-DAG consensus for data tokenization. IEEE Access 7, 39273–39287 (2019)CrossRefGoogle Scholar
  30. 30.
    Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing with fine-grained access control in decentralized storage systems. IEEE Access 6, 38437–38450 (2018)CrossRefGoogle Scholar
  31. 31.
    Zhao, B., Fan, P., Ni, M.: Mchain: a blockchain-based VM measurements secure storage approach in IaaS cloud with enhanced integrity and controllability. IEEE Access 6, 43758–43769 (2018)CrossRefGoogle Scholar
  32. 32.
    Liu, J., Li, W., Karame, G., Asokan, N.: Scalable byzantine consensus via hardware-assisted secret sharing. IEEE Trans. Comput. 68(1), 139–151 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Dai, M., Zhang, S., Wang, H., Jin, S.: A low storage room requirement framework for distributed ledger in blockchain. IEEE Access 6, 22970–22975 (2018)CrossRefGoogle Scholar
  34. 34.
    Liu, M., Yu, F., Teng, Y., Leung, V., Song, M.: Computation offloading and content caching in wireless blockchain networks with mobile edge computing. IEEE Trans. Veh. Technol. 67(11), 11008–11021 (2018)CrossRefGoogle Scholar
  35. 35.
    Gai, K., Wu, Y., Zhu, L., Xu, L., Zhang, Y.: Permissioned blockchain and edge computing empowered privacy-preserving smart grid networks. IEEE Internet Things J. PP(99), 1 (2019)Google Scholar
  36. 36.
    Xin, W., Zhang, T., Hu, C., Tang, C., Liu, C., Chen, Z.: On scaling and accelerating decentralized private blockchains. In: 2017 IEEE 3rd International Conference on Big Data Security on Cloud, IEEE International Conference on High Performance and Smart Computing, and IEEE International Conference on Intelligent Data and Security, Beijing, China, pp. 267–271. IEEE (2017)Google Scholar
  37. 37.
    Xu, C., et al.: Making big data open in edges: a resource-efficient blockchain-based approach. IEEE Trans. Parallel Distrib. Syst. 30(4), 870–882 (2018)CrossRefGoogle Scholar
  38. 38.
    Borge, M., Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Ford, B.: Proof-of-personhood: redemocratizing permissionless cryptocurrencies. In: 2017 IEEE European Symposium on Security and Privacy Workshops, San Francisco, California, USA, pp. 23–26. IEEE (2017)Google Scholar
  39. 39.
    Zhu, L., Wu, Y., Gai, K., Choo, K.K.R.: Controllable and trustworthy blockchain-based cloud data management. Futur. Gener. Comput. Syst. 91, 527–535 (2019)CrossRefGoogle Scholar
  40. 40.
    Gai, K., Qiu, M., Zhao, H., Tao, L., Zong, Z.: Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing. J. Netw. Comput. Appl. 59, 46–54 (2016)CrossRefGoogle Scholar
  41. 41.
    Gai, K., Qiu, M., Zhao, H.: Energy-aware task assignment for mobile cyber-enabled applications in heterogeneous cloud computing. J. Parallel Distrib. Comput. 111, 126–135 (2018)CrossRefGoogle Scholar
  42. 42.
    Gai, K., Choo, K.K.R., Qiu, M., Zhu, L.: Privacy-preserving content-oriented wireless communication in Internet-of-Things. IEEE Internet Things J. 5(4), 3059–3067 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyBeijing Institute of TechnologyBeijingChina
  2. 2.Andijan Machine-Building InstituteAndijanUzbekistan

Personalised recommendations