Advertisement

Partial Synchronization in 2-Community Networks

  • Jakub SawickiEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Large interconnected systems built from individual nodes with complex dynamics are common in many seemingly distinct fields of natural sciences, technology, and economy. We analyze partial synchronization patterns in a network of FitzHugh-Nagumo oscillators with empirical structural connectivity measured in healthy human subjects. We report a dynamical asymmetry between the hemispheres, induced by the natural structural asymmetry. We show that the dynamical asymmetry can be enhanced by introducing the inter-hemispheric coupling strength as a control parameter for partial synchronization patterns. We specify the possible modalities for existence of unihemispheric sleep in human brain, where one hemisphere sleeps while the other remains awake.

References

  1. 1.
    Abhang PA, Gawali BW (2015) Correlation of EEG images and speech signals for emotion analysis. Br J Appl Sci Technol 10:1CrossRefGoogle Scholar
  2. 2.
    Abrams DM, Strogatz SH (2004) Chimera states for coupled oscillators. Phys Rev Lett 93:174102Google Scholar
  3. 3.
    Abrams DM, Mirollo RE, Strogatz SH, Wiley DA (2008) Solvable model for chimera states of coupled oscillators. Phys Rev Lett 101:084103Google Scholar
  4. 4.
    Agnew HW Jr, Webb WB, Williams RL (1966) The first night effect: an EEG study of sleep. Psychophysiology 2:263CrossRefGoogle Scholar
  5. 5.
    Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155CrossRefGoogle Scholar
  6. 6.
    Bergner A, Frasca M, Sciuto G, Buscarino A, Ngamga EJ, Fortuna L, Kurths J (2012) Remote synchronization in star networks. Phys Rev E 85:026208Google Scholar
  7. 7.
    Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92:1087CrossRefGoogle Scholar
  8. 8.
    Cabral J, Fernandes HM, Van Hartevelt TJ, James AC, Kringelbach ML (2013) Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks. Chaos 23:046111MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chouzouris T, Omelchenko I, Zakharova A, Hlinka J, Jiruska P, Schöll E (2018) Chimera states in brain networks: empirical neural vs. modular fractal connectivity. Chaos 28:045112MathSciNetCrossRefGoogle Scholar
  10. 10.
    Costa MS, Born J, Claussen JC, Martinetz T (2016) Modeling the effect of sleep regulation on a neural mass model. J Comp Neurosci 41:15MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Creutzfeldt OD (1964) Experimenteller Nachweis von Beziehungen zwischen EEG-Wellen und Aktivität corticaler Nervenzellen. Naturwissenschaften 51(7):166Google Scholar
  12. 12.
    Daianu M, Jahanshad N, Dennis EL, Toga AW, McMahon KL, de Zubicaray GI, Martin NG, Wright MJ, Hickie IB, Thompson PM (2012) Left versus right hemisphere differences in brain connectivity: 4-Tesla HARDI tractography in 569 twins. Proc IEEE Int Symp Biomed Imaging, 526–529Google Scholar
  13. 13.
    Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A, Gais S, Rauchs G, Sterpenich V, Vandewalle G, Carrier J, Moonen G, Balteau E, Degueldre C, Luxen A, Phillips C, Maquet P (2008) Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci USA 105:15160–15165ADSCrossRefGoogle Scholar
  14. 14.
    De Domenico M, Porter MA, Arenas A (2015) MuxViz: a tool for multilayer analysis and visualization of networks. J Complex Netw 3:159–176Google Scholar
  15. 15.
    FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466ADSCrossRefGoogle Scholar
  16. 16.
    Fuller PM, Gooley JJ, Saper CB (2006) Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms 21:482CrossRefGoogle Scholar
  17. 17.
    Hlinka J, Coombes S (2012) Using computational models to relate structural and functional brain connectivity. Eur J Neurosc 36:2137CrossRefGoogle Scholar
  18. 18.
    Kann S, Zhang S, Manza P, Leung H-C, Li C-SR (2016) Hemispheric lateralization of resting-state functional connectivity of the anterior insula: association with age, gender, and a novelty-seeking trait. Brain Connect 6(9):724–734CrossRefGoogle Scholar
  19. 19.
    Kedziora DJ, Abeysuriya RG, Phillips AJK, Robinson PA (2012) Physiologically based quantitative modelling of unihemispheric sleep. J Theor Biol 314:109MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Kemeth FP, Haugland SW, Schmidt L, Kevrekidis YG, Krischer K (2016) A classification scheme for chimera states. Chaos 26:094815CrossRefGoogle Scholar
  21. 21.
    Kim H, Moon J-Y, Mashour GA, Lee U (2018) Mechanisms of hysteresis in human brain networks during transitions of consciousness and unconsciousness: theoretical principles and empirical evidence. PLoS Comput Biol 14:e1006424CrossRefGoogle Scholar
  22. 22.
    Kuramoto Y, Battogtokh D (2002) Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlin Phen in Complex Sys 5:380–385Google Scholar
  23. 23.
    Lesku JA, Vyssotski AL, Martinez-Gonzalez D, Wilzeck C, Rattenborg NC (2011) Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds? Proc R Soc B 278:2419CrossRefGoogle Scholar
  24. 24.
    Malhotra RK, Avidan AY (2014) Sleep stages and scoring technique, Chapter 3. W.B. Saunders, pp 77–99Google Scholar
  25. 25.
    Mascetti GG (2016) Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives. Nat Sci Sleep 8:221Google Scholar
  26. 26.
    Massobrio P, de Arcangelis L, Pasquale V, Jensen HJ, Plenz D (2015) Criticality as a signature of healthy neural systems. Front Syst Neurosci 9:22Google Scholar
  27. 27.
    Melicher T, Horacek J, Hlinka J, Spaniel F, Tintera J, Ibrahim I, Mikolas P, Novak T, Mohr P, Hoschl C (2015) White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophr Res 162:22–28CrossRefGoogle Scholar
  28. 28.
    Moroni F, Nobili L, De Carli F, Massimini M, Francione S, Marzano C, Proserpio P, Cipolli C, De Gennaro L, Ferrara M (2012) Slow EEG rhythms and inter-hemispheric synchronization across sleep and wakefulness in the human hippocampus. NeuroImage 60:497CrossRefGoogle Scholar
  29. 29.
    Motter AE (2010) Nonlinear dynamics: spontaneous synchrony breaking. Nat Phys 6:164–165ADSCrossRefGoogle Scholar
  30. 30.
    Mukhametov LM, Supin AY, Polyakova IG (1977) Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res 134:581CrossRefGoogle Scholar
  31. 31.
    Niedernostheide FJ, Arps M, Dohmen R, Willebrand H, Purwins HG (1992) Spatial and spatio-temporal patterns in pnpn semiconductor devices. Phys Status Solidi (b) 172:249ADSCrossRefGoogle Scholar
  32. 32.
    Olbrich E, Claussen JC, Achermann P (2011) The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain. Phil Trans R Soc A 369:3884ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Panaggio MJ, Abrams DM (2015) Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28:R67ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Purpura DP (1959) Nature of electrocortical potentials and synaptic organizations in cerebral and cerebellar cortex. Int Rev Neurobiol 1:47Google Scholar
  35. 35.
    Ramlow L (2018) Partial synchronization in 2-community networks of FitzHugh-Nagumo oscillators with empirical structural connectivities. Master’s thesis, Technische Universität Berlin)Google Scholar
  36. 36.
    Ramlow L, Sawicki J, Zakharova A, Hlinka J, Claussen JC, Schöll E (2019) Partial synchronization in empirical brain networks as a model for unihemispheric sleep. Europhys Lett 126:50007CrossRefGoogle Scholar
  37. 37.
    Rattenborg NC, Lima SL, Amlaner CJ (1999) Facultative control of avian unihemispheric sleep under the risk of predation. Behav Brain Res 105:163CrossRefGoogle Scholar
  38. 38.
    Rattenborg NC, Amlaner CJ, Lima SL (2000) Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 24:817–842CrossRefGoogle Scholar
  39. 39.
    Rattenborg NC, Voirin B, Cruz SM, Tisdale R, Dell’Omo G, Lipp HP, Wikelski M, Vyssotski AL (2016) Evidence that birds sleep in mid-flight. Nat Commun 7:12468Google Scholar
  40. 40.
    Rattenborg NC, Horacio O, Kempenaers B, Lesku JA, Meerlo P, Scriba MF (2017) Sleep research goes wild: new methods and approaches to investigate the ecology, evolution and functions of sleep. Phil Trans R Soc B 372:20160251CrossRefGoogle Scholar
  41. 41.
    Ribeiro TL, Copelli M, Caixeta F, Belchior H, Chialvo DR, Nicolelis MAL, Ribeiro S (2010) Spike Avalanches exhibit universal dynamics across the sleep-wake cycle. PLoS ONE 5:e14129ADSCrossRefGoogle Scholar
  42. 42.
    Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726CrossRefGoogle Scholar
  43. 43.
    Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023CrossRefGoogle Scholar
  44. 44.
    Scammell TE, Arrigoni E, Lipton JO (2017) Neural circuitry of wakefulness and sleep. Neuron 93:747CrossRefGoogle Scholar
  45. 45.
    Schilling KG, Daducci A, Maier-Hein K, Poupon C, Houde J-C, Nath V, Anderson AW, Landman BA, Descoteaux M (2019) Challenges in diffusion MRI tractography—lessons learned from international benchmark competitions. Magn Res Imaging 57:194CrossRefGoogle Scholar
  46. 46.
    Schwartz JRL, Roth T (2008) Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol 6:367–378CrossRefGoogle Scholar
  47. 47.
    Schöll E (2016) Synchronization patterns and chimera states in complex networks: interplay of topology and dynamics. Eur Phys J Spec Top 225:891–919ADSCrossRefGoogle Scholar
  48. 48.
    Sejnowski TJ, Destexhe A (2000) Why do we sleep? Brain Res 886:208–223Google Scholar
  49. 49.
    Shima S, Kuramoto Y (2004) Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys Rev E 69:036213Google Scholar
  50. 50.
    Soriano MC, García-Ojalvo J, Mirasso CR, Fischer I (2013) Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev Mod Phys 85:421–470ADSCrossRefGoogle Scholar
  51. 51.
    Spiess M, Bernard G, Kurth S, Ringli M, Wehrle FM, Jenni OG, Huber R, Siclari F (2018) How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep. NeuroImage 178:23CrossRefGoogle Scholar
  52. 52.
    Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685ADSCrossRefGoogle Scholar
  53. 53.
    Steyn-Ross DA, Steyn-Ross M (2010) Modeling phase transitions in the brain. Springer, New YorkzbMATHCrossRefGoogle Scholar
  54. 54.
    Tamaki M, Bang JW, Watanabe T, Sasaki Y (2016) Night watch in one brain hemisphere during sleep associated with the first-night effect in humans. Curr Biol 26:1190–1194CrossRefGoogle Scholar
  55. 55.
    Tarpley RJ, Ridgway SH (1994) Corpus callosum size in delphinid cetaceans. Brain Behav Evol 44(3):156CrossRefGoogle Scholar
  56. 56.
    Tomasi D, Volkow ND (2012) Laterality patterns of brain functional connectivity: gender effects. Cereb Cortex 22(6):1455–1462CrossRefGoogle Scholar
  57. 57.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289CrossRefGoogle Scholar
  58. 58.
    Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443ADSCrossRefGoogle Scholar
  59. 59.
    Wright KP (2009) Encyclopedia of neuroscience, Chapter EEG in S. Springer, p 85Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations