Usability Evaluation of Heart Disease Monitoring Mobile Applications: A Comparative Study

  • Muhammad SobriEmail author
  • Mohamad Taha Ijab
  • Norshita Mat Nayan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11870)


Heart disease is one of the most prominent silent killers in the world. Further, treating the heart disease problems is considerably costly. In the era of the Fourth Industrial Revolution (4IR), many heart disease monitoring mobile applications are available on Google Play and Apple App Store. These applications enable the patients to carry out self-monitoring of their heart conditions practically easy. This study aims to conduct usability evaluations of selected heart disease monitoring mobile applications from the perspective of the heart patients. The compared applications are: (i) Cardiag Diagnosis, (ii) iCare Health Monitoring Full, and (iii) Heart Rate Plus. These applications were evaluated and compared based on the features offered by the applications as well as their common usability elements: (i) learnability, (ii) efficiency, (iii) memorability, (iv) error, and (v) satisfaction. This comparative study adopted the Post-Study System Usability Questionnaire (PSSUQ) in evaluating heart disease monitoring mobile applications. The study recruited twenty heart patients in a hospital in Palembang, Indonesia. From the participants’ assessments, the study found that the applications: (i) offer peripheral features unnecessary to the users, (ii) slowness in providing results (i.e., measurement and/or feedback), (iii) unmemorable features, and (iv) results of measurements are perceived to be dubious and unreliable. This paper theoretically contributes to provide recommendations to application developers and usability designers on the importance of meeting the usability elements desired by the users, especially mobile applications for chronic diseases.


Cardiac monitoring Chronic diseases mHealth PSSUQ Human computer interaction 



The main researcher thanked Universitas Bina Darma for providing grant funding to conduct this research.


  1. 1.
    Mathers, C.D., Lopez, A.D., Murray, C.J.L.: Chapter 3: The burden of disease and mortality by condition: data, methods, and results for 2001. In: Global Burden of Disease and Risk Factors, vol. 2003, pp. 45–93 (2006)Google Scholar
  2. 2.
    Dariush, M., et al.: Heart Disease and Stroke Statistics—2016 Update, vol. 133, no. 4. American Heart Association (2016)Google Scholar
  3. 3.
    Sobri, M., Ijab, M.T., Mat Nayan, N.: Systematic literature review untuk membuat model aplikasi pemantauan kesehatan cardiovascular. J. RESTI (Rekayasa Sist. dan Teknol. Informasi) 2(2), 458–464 (2018)CrossRefGoogle Scholar
  4. 4.
    Yusro, A.H.: Penyakit Jantung Koroner di indonesia Penyebab Kematian Nomor 1 Manusia, 2 (2017). Accessed 13 Dec 2017
  5. 5.
    Frank, J.W., et al.: Coronary heart disease, heart failure, and the risk of dementia: a systematic review and meta-analysis. Alzheimer’s Dement. 14(11), 1–12 (2018)CrossRefGoogle Scholar
  6. 6.
    Ileana, L.P., Desai, N.R., Allen, L.A., Heidenreich, P.: Managing the economic challenges in the treatment of heart failure. Prog. Cardiovasc. Dis. 61(5–6), 476–483 (2018)Google Scholar
  7. 7.
    Anshari, M., Nabil, M.: Mobile health (mHealth) services and online health educators. Biomed. Inform. Insights 8, 19–28 (2016)CrossRefGoogle Scholar
  8. 8.
    Zahra, F., Hussain, A., Mohd, H.: Factors affecting mobile health application for chronic diseases. J. Telecommun. Electron. Comput. Eng. 10(1), 77–81 (2018)CrossRefGoogle Scholar
  9. 9.
    Khajouei, R., De Jongh, D., Jaspers, M.W.M.: Usability evaluation of a computerized physician order entry for medication ordering. Stud. Health Technol. Inform. 150, 532–536 (2009)Google Scholar
  10. 10.
    Menachemi, N., Collum, T.H.: Benefits and drawbacks of electronic health record systems. Risk Manag. Healthc. Policy 4, 47–55 (2011)CrossRefGoogle Scholar
  11. 11.
    Yucel, G., Cebi, S., Hoege, B., Ozok, A.F.: A fuzzy risk assessment model for hospital information system implementation. Expert Syst. Appl. 39(1), 1211–1218 (2012)CrossRefGoogle Scholar
  12. 12.
    Collen, M.F., Ball, M.J. (eds.): The History of Medical Informatics in the United States. HI. Springer, London (2015). Scholar
  13. 13.
    Bennett, K.B., Nagy, A.L., Flach, J.M.: Visual Display. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  14. 14.
    Nielsen, J.: Usability Engineering. Morgan Kaufman, San Francisco (1993)CrossRefGoogle Scholar
  15. 15.
    ISO: Ergonomic requirements for office work with visual display terminals. Part 11: Guidance on usability (ISO DIS 9241–11), ISO DIS 92. International Standards Organization, London (1994)Google Scholar
  16. 16.
    Rachel, H., Derek, F., David, D.: Usability of mobile applications: literature review and rationale for a new usability model. J. Interact. Sci. 1(1), 1 (2013)CrossRefGoogle Scholar
  17. 17.
    Fatima, Z., Haslina, M., Azham, H., Mazni, O.: Usability dimensions for chronic disease mobile applications: a systematics literature review. In: Knowledge Management International Conference (KMICe), pp. 363–368 (2018)Google Scholar
  18. 18.
    Muqtadiroh, F.A., Astuti, H.M., Tyas Darmaningrat, E.W., Aprilian, F.R.: Usability evaluation to enhance software quality of cultural conservation system based on Nielsen model (WikiBudaya). Procedia Comput. Sci. 124, 513–521 (2017)CrossRefGoogle Scholar
  19. 19.
    Crepaldi, N.Y., et al.: Satisfaction evaluation of health professionals in the usability of software for monitoring the tuberculosis treatment. Procedia Comput. Sci. 121, 889–896 (2017)CrossRefGoogle Scholar
  20. 20.
    ANSI: Common Industry Format for Usability Test Reports (ANSI-NCITS 354–2001), Washington DC (2001)Google Scholar
  21. 21.
    ISO: Ergonomic requirements for office work with visual display terminals (VDTs) e Part 11: guidance on usability (ISO 9241-11:1998E), Geneva (1998)Google Scholar
  22. 22.
    Chin, J.P., Diehl, V.A., Norman, K.L.: Development of an instrument measuring user satisfaction of the human-computer interface. In: CHI 1998, pp. 213–218 (1988)Google Scholar
  23. 23.
    Kirakowski, J., Corbett, M.: SUMI: the software usability measurement inventory. Br. J. Educ. Technol. 24(3), 210–212 (1993)CrossRefGoogle Scholar
  24. 24.
    McSweeney, R.: SUMI: a psychometric approach to software evaluation. University College of Cork (1992)Google Scholar
  25. 25.
    Brooke, J.: SUS: a ‘quick and dirty’ usability scale. In: Usability Evaluation in Industry, pp. 189–194 (1996)Google Scholar
  26. 26.
    Lewis, J.R.: Psychometric evaluation of the PSSUQ using data from five years of usability studies. Int. J. Hum. Comput. Interact. 14, 463–488 (2002)CrossRefGoogle Scholar
  27. 27.
    Sauro, J., Lewis, J.R.: Chapter 8 - Standardized usability questionnaires in quantifying the user experience, 2nd edn., pp. 185–248. Elsevier Inc. (2016)Google Scholar
  28. 28.
    Aitken, M., et al.: Patient apps for improved healthcare from novelty to mainstream. IMS Inst. Healthc. Inform., 1–65 (2013)Google Scholar
  29. 29.
    Cronbach, L.J.: Coefficient alpha and the internal structure of tests. Psychometrika 16(3), 297–334 (1951)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Sobri
    • 1
    • 2
    Email author
  • Mohamad Taha Ijab
    • 2
  • Norshita Mat Nayan
    • 2
  1. 1.Universitas Bina DarmaPalembangIndonesia
  2. 2.The National University of MalaysiaBangiMalaysia

Personalised recommendations