Advertisement

Combining ARIZ with Shape Grammars to Support Designers

  • Kok Weng Ng
  • Mei Choo AngEmail author
  • Dong Theng Cher
  • Siti Azfanizam Ahmad
  • Amelia Natasya Abdul Wahab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11870)

Abstract

Among TRIZ (Theory of Inventive Problem Solving) methods that are applied to help solve design problems, ARIZ (Algorithm for Inventive Problem Solving) is considered to be the most powerful and is able to solve problems with “minimal changes to the system”. However, the potential solutions derived from ARIZ are solution concepts that are general and are dependent on the engineers to further define these solution concepts into specific solutions. Shape grammars have been used to describe the shape of specific solution concepts or products with the intention to allow engineers to explore and generate a variation of specific solutions. This research work explores the application of a novel framework that combines ARIZ with shape grammars to facilitate and help engineers to translate the general solution concepts into a visualisation of specific solution concepts.

Keywords

ARIZ TRIZ Support tool Product design 

Notes

Acknowledgments

The authors would like to thank the Ministry of Education Malaysia (Kementerian Pendidikan Malaysia) and the Universiti Kebangsaan Malaysia for supporting the work through research grant FRGS/1/2018/TK03/UKM/02/6 and GUP-2018-124.

References

  1. 1.
    Gadd, K.: TRIZ for Engineers: Enabling Inventive Problem Solving. Wiley, Singapore (2011)CrossRefGoogle Scholar
  2. 2.
    Orloff, M.A.: Modern TRIZ: A Practical Course with EASyTRIZ Technology. Springer, Berlin (2012).  https://doi.org/10.1007/978-3-642-25218-1CrossRefGoogle Scholar
  3. 3.
    Altshuller, G.: Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Center, Worcester (1999)Google Scholar
  4. 4.
    Altshuller, G.: 40 Principles: TRIZ Keys to Innovation. Technical Innovation Center, Worcester (2002)Google Scholar
  5. 5.
    Petrov, V.: TRIZ. Theory of Inventive Problem Solving Level 1. Springer, Heidelberg (2019).  https://doi.org/10.1007/978-3-030-04254-7CrossRefGoogle Scholar
  6. 6.
    Yilmaz, S., Daly, S.R., Seifert, C.M., Gonzalez, R.: Evidence-based design heuristics for idea generation. Design Stud. 46, 95–124 (2016)CrossRefGoogle Scholar
  7. 7.
    Ang, M.C., Ng, K.W., Cher, D.T., Ahmad, S.A.: Linking TRIZ with shape grammar to support engineers. In: MyTRIZ Conference 2016. Taylor’s University Lakeside Campus, Malaysia (2016)Google Scholar
  8. 8.
    Jowers, I., Earl, C., Stiny, G.: Shapes, structures and shape grammar implementation. Comput. Aided Des. 111, 80–92 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ang, M.C., Ng, K.W., Pham, D.T.: Combining the Bees algorithm and shape grammar to generate branded product concepts. Proc. IMechE Part B: J. Eng. Manuf. 227, 1860–1873 (2013)CrossRefGoogle Scholar
  10. 10.
    Ang, M.C., Chong, H.Y., McKay, A., Ng, K.W.: Capturing mini brand using a parametric shape grammar. In: Zaman, H.B., et al. (eds.) IVIC 2011. LNCS, vol. 7067, pp. 1–12. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25200-6_1CrossRefGoogle Scholar
  11. 11.
    Ang, M.C., Chau, H.H., McKay, A., de Pennington, A.: Combining evolutionary algorithms and shape grammars to generate branded product design. In: The Second International Conference on Design Computing and Cognition (DCC 2006), pp. 521–539. Technical University of Eindhoven, Netherlands (2006)Google Scholar
  12. 12.
    Agarwal, M., Cagan, J.: A blend of different tastes: the language of coffeemakers. Environ. Plan. B-Plan. Des. 25, 205–226 (1998)CrossRefGoogle Scholar
  13. 13.
    Cameron, G.: TRIZICS: Teach Yourself TRIZ, How to Invent, Innovate and Solve “Impossible” Technical Problems Systematically. CreateSpace Independent Publishing Platform, Scotts Valley (2010)Google Scholar
  14. 14.
    Yeoh, T.S., Yeoh, T.J., Song, C.L.: TRIZ - Systematic Innovation in Manufacturing. Firstfruits Sdn Bhd, Petaling Jaya (2009)Google Scholar
  15. 15.
    Cameron, G.: ARIZ Explored. CreateSpace Independent Publishing Platform, San Bernardino (2015)Google Scholar
  16. 16.
    Stiny, G., Gips, J.: Shape grammars and the generative specification of painting and sculpture. In: Freiman, C. (ed.) Proceedings of IFIP Congress 1971, North Holland, Ljubljana, Yugoslavia, vol. 2, pp. 1460–1465 (1972)Google Scholar
  17. 17.
    Stiny, G., Mitchell, W.J.: The palladian grammar. Environ. Plan. B-Plan. Des. 5, 5–18 (1978)CrossRefGoogle Scholar
  18. 18.
    Pugliese, M.J., Cagan, J.: Capturing a rebel: modeling the Harley-Davidson brand through a motorcycle shape grammar. Res. Eng. Design-Theory Appl. Concurr. Eng. 13, 139–156 (2002)Google Scholar
  19. 19.
    McCormack, J.P., Cagan, J., Vogel, C.M.: Speaking the Buick language: capturing, understanding, and exploring brand identity with a shape grammar. Des. Stud. 25, 1–29 (2004)CrossRefGoogle Scholar
  20. 20.
    Chau, H.H., Chen, X., McKay, A., de Pennington, A.: Evaluation of a 3D Shape Grammar Implementation. In: Gero, J.S. (ed.) Design Computing and Cognition 2004, pp. 357–376. Springer, Dordrecht (2004).  https://doi.org/10.1007/978-1-4020-2393-4_19CrossRefGoogle Scholar
  21. 21.
    Barros, M., Duarte, J.P., Chaparro, B.M.: A grammar-based model for the mass customisation of chairs: modelling the optimisation part. Nexus Netw. J. 17, 875–898 (2015)CrossRefGoogle Scholar
  22. 22.
    Strobbe, T., Eloy, S., Pauwels, P., Verstraeten, R., Meyer, R.D., Campenhout, J.V.: A graph-theoretic implementation of the Rabo-de-Bacalhau transformation grammar. AI EDAM-Artif. Intell. Eng. Design Anal. Manuf. 30, 138–158 (2016)CrossRefGoogle Scholar
  23. 23.
    Knight, T.: Shapes and other things. Nexus Netw. J. 17, 963–980 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kok Weng Ng
    • 1
  • Mei Choo Ang
    • 2
    Email author
  • Dong Theng Cher
    • 3
  • Siti Azfanizam Ahmad
    • 4
  • Amelia Natasya Abdul Wahab
    • 5
  1. 1.Department of Mechanical, Materials and Manufacturing, Faculty of Science and EngineeringUniversity of Nottingham MalaysiaSemenyihMalaysia
  2. 2.Institute of Visual InformaticsUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Industrial Centre of Innovation in Smart ManufacturingSIRIM BerhadKuala LumpurMalaysia
  4. 4.Department of Mechanical and Manufacturing Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations