Advertisement

A Combinatorial Branch and Bound for the Min-Max Regret Spanning Tree Problem

  • Noé GodinhoEmail author
  • Luís Paquete
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11544)

Abstract

Uncertainty in optimization can be modeled with the concept of scenarios, each of which corresponds to possible values for each parameter of the problem. The min-max regret criterion aims at obtaining a solution minimizing the maximum deviation, over all possible scenarios, from the optimal value of each scenario. Well-known problems, such as the shortest path problem and the minimum spanning tree, become NP-hard under a min-max regret criterion. This work reports the development of a branch and bound approach to solve the Minimum Spanning Tree problem under a min-max regret criterion in the discrete scenario case. The approach is tested in a wide range of test instances and compared with a generic pseudo-polynomial algorithm.

Keywords

Min-max regret criterion Multi-objective optimization Minimum Spanning Tree Branch and bound 

Notes

Acknowledgments

This work was carried out in the scope of the MobiWise project: From mobile sensing to mobility advising (P2020 SAICTPAC/0011/2015), co-financed by COMPETE 2020, Portugal 2020 - POCI, European Union’s ERDF.

References

  1. 1.
    Ginac C++ libraries. https://www.ginac.de/
  2. 2.
    Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation complexity of min-max (regret) versions of shortest path, spanning tree, and knapsack. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 862–873. Springer, Heidelberg (2005).  https://doi.org/10.1007/11561071_76CrossRefGoogle Scholar
  3. 3.
    Aissi, H., Bazgan, C., Vanderpooten, D.: Pseudo-polynomial time algorithms for min-max and min-max regret problems. In: Proceedings of the 5th International Symposium on Operations Research and Its Applications, pp. 171–178 (2005)Google Scholar
  4. 4.
    Barahona, J.F., Pulleyblank, R.: Exact arborescences, matching and cycles. Discrete Appl. Math. 16, 91–99 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chassein, A., Goerigk, M.: On the recoverable robust traveling salesman problem. Optim. Lett. 10(7), 1479–1492 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ehrgott, M.: Muticriteria Optimization, 2nd edn. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-27659-9CrossRefGoogle Scholar
  7. 7.
    Figueira, J.R., Paquete, L., Simões, M., Vanderpooten, D.: Algorithmic improvements on dynamic programming for the bi-objective \(\{0,1\}\) knapsack problem. Comput. Optim. Appl. 56(1), 97–111 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Harold, N.G., Myers, E.W.: Finding all spanning trees of directed and undirected graphs. SIAM J. Comput. 7(3), 280–287 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Autom. Reason. 24(1–2), 67–100 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  11. 11.
    Makuchowski, M.: Perturbation algorithm for a minimax regret minimum spanning tree problem. Oper. Res. Decis. 24(1), 37–49 (2014)MathSciNetGoogle Scholar
  12. 12.
    Montemanni, R., Gambardella, L.M.: A branch and bound algorithm for the robust spanning tree problem with interval data. Eur. J. Oper. Res. 161(3), 771–779 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Montemanni, R., Gambardella, L.M., Donati, A.V.: A branch and bound algorithm for the robust shortest path problem with interval data. Oper. Res. Lett. 32(3), 225–232 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme. INFORMS J. Comput. 22(3), 371–386 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Serafini, P.: Some considerations about computational complexity for multi objective combinatorial problems. In: Jahn, J., Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization. LNEMS, vol. 294, pp. 222–232. Springer, Heidelberg (1987).  https://doi.org/10.1007/978-3-642-46618-2_15CrossRefGoogle Scholar
  16. 16.
    Sourd, F., Spanjaard, O.: A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem. INFORMS J. Comput. 20(3), 472–484 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yaman, H., Karasan, O.E., Pinar, M.Ç.: The robust spanning tree problem with interval data. Oper. Res. Lett. 29, 31–40 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CISUC, Department of Informatics EngineeringUniversity of Coimbra, Pólo IICoimbraPortugal

Personalised recommendations