Advertisement

Student Course Allocation with Constraints

  • Akshay UttureEmail author
  • Vedant Somani
  • Prem Krishnaa
  • Meghana Nasre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11544)

Abstract

Real-world matching scenarios, like the matching of students to courses in a university setting, involve complex downward-feasible constraints like credit limits, time-slot constraints for courses, basket constraints (say, at most one humanities elective for a student), in addition to the preferences of students over courses and vice versa, and class capacities. We model this problem as a many-to-many bipartite matching problem where both students and courses specify preferences over each other and students have a set of downward-feasible constraints. We propose an Iterative Algorithm Framework that uses a many-to-one matching algorithm and outputs a many-to-many matching that satisfies all the constraints. We prove that the output of such an algorithm is Pareto-optimal from the student-side if the many-to-one algorithm used is Pareto-optimal from the student side. For a given matching, we propose a new metric called the Mean Effective Average Rank (MEAR), which quantifies the goodness of allotment from the side of the students or the courses. We empirically evaluate two many-to-one matching algorithms with synthetic data modeled on real-world instances and present the evaluation of these two algorithms on different metrics including MEAR scores, matching size and number of unstable pairs.

References

  1. 1.
    National Residency Matching Program. https://www.nrmp.org
  2. 2.
  3. 3.
    Bansal, V., Agrawal, A., Malhotra, V.S.: Polynomial time algorithm for an optimal stable assignment with multiple partners. Theor. Comput. Sci. 379(3), 317–328 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Biró, P., Irving, R.W., Schlotter, I.: Stable matching with couples: An empirical study. J. Exp. Algorithmics 16, 1.2:1.1–1.2:1.27 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cechlárová, K., et al.: Pareto optimal matchings in many-to-many markets with ties. Theor. Comput. Syst. 59(4), 700–721 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cechlárová, K., Klaus, B., Manlove, D.F.: Pareto optimal matchings of students to courses in the presence of prerequisites. Discrete Optim. 29, 174–195 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cechlárová, K., Eirinakis, P., Fleiner, T., Magos, D., Mourtos, I., Potpinková, E.: Pareto optimality in many-to-many matching problems. Discrete Optim. 14, 160–169 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cechlárová, K., Fleiner, T.: Pareto optimal matchings with lower quotas. Math. Soc. Sci. 88, 3–10 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cechlárová, K., Manlove, D.F.: The exchange-stable marriage problem. Discrete Appl. Math. 152(1), 109–122 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Diebold, F., Aziz, H., Bichler, M., Matthes, F., Schneider, A.: Course allocation via stable matching. Bus. Inf. Syst. Eng. 6(2), 97–110 (2014)CrossRefGoogle Scholar
  11. 11.
    Dutta, B., Massó, J.: Stability of matchings when individuals have preferences over colleagues. J. Econ. Theory 75(2), 464–475 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Roth, E.A.: The effects of the change in the NRMP matching algorithm. national resident matching program. JAMA J. Am. Med. Assoc. 278, 729–732 (1997)CrossRefGoogle Scholar
  13. 13.
    Roth, E.A., Peranson, E.: The redesign of the matching market for american physicians: some engineering aspects of economic design. Am. Econ. Rev. 89, 748–780 (1999)CrossRefGoogle Scholar
  14. 14.
    Echenique, F., Wilson, J.A., Yariv, L.: Clearinghouses for two-sided matching: an experimental study. Quant. Econ. 7(2), 449–482 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fleiner, T., Kamiyama, N.: A matroid approach to stable matchings with lower quotas. In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012 pp. 135–142 (2012)Google Scholar
  16. 16.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Giannakopoulos, I., Karras, P., Tsoumakos, D., Doka, K., Koziris, N.: An equitable solution to the stable marriage problem. In: Proceedings of the 2015 IEEE 27th International Conference on Tools with Artificial Intelligence ICTAI, pp. 989–996. ICTAI 2015 (2015)Google Scholar
  18. 18.
    Hamada, K., Iwama, K., Miyazaki, S.: The hospitals/residents problem with lower quotas. Algorithmica 74(1), 440–465 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Huang, C.C.: Classified stable matching. In: Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 1235–1253 (2010)Google Scholar
  20. 20.
    Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48(3), 261–272 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Irving, R.W.: Stable matching problems with exchange restrictions. J. Comb. Optim. 16(4), 344–360 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Irving, R.W., Manlove, D.F., O’Malley, G.: Stable marriage with ties and bounded length preference lists. J. Discrete Algorithms 7(2), 213–219 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Irving, R.W., Manlove, D.F., Scott, S.: The hospitals/residents problem withties. In: Algorithm Theory - SWAT 2000, pp. 259–271 (2000)CrossRefGoogle Scholar
  24. 24.
    Iwama, K., Miyazaki, S., Morita, Y., Manlove, D.: Stable marriage with incomplete lists and ties. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48523-6_41CrossRefzbMATHGoogle Scholar
  25. 25.
    Klaus, B., Klijn, F.: Stable matchings and preferences of couples. J. Econ. Theory 121(1), 75–106 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Krishnapriya, A. M., Nasre, M., Nimbhorkar, P., Rawat, A.: How good are popular matchings? In: Proceedings of the 17th International Symposium on Experimental Algorithms, SEA 2018, L’Aquila, Italy, 27–29 June 2018, pp. 9:1–9:14 (2018)Google Scholar
  27. 27.
    Malhotra, V.S.: On the stability of multiple partner stable marriages with ties. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 508–519. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30140-0_46CrossRefGoogle Scholar
  28. 28.
    Manlove, D.F., McBride, I., Trimble, J.: “almost-stable” matchings in the hospitals/residents problem with couples. Constraints 22(1), 50–72 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Peranson, E., Randlett, R.R.: The NRMP matching algorithm revisited. Acad. Med. 70, 477–484 (1995)CrossRefGoogle Scholar
  30. 30.
    Roth, A.E.: A natural experiment in the organization of entry-level labor markets: regional markets for new physicians and surgeons in the united kingdom. Am. Econ. Rev. 81(3), 415–440 (1991)Google Scholar
  31. 31.
    Williams, K.J.: A reexamination of the NRMP matching algorithm national resident matching program. Academic medicine: journal of the Association of American Medical Colleges 70, 470–476 (1995). discussion 490CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Akshay Utture
    • 2
    Email author
  • Vedant Somani
    • 1
  • Prem Krishnaa
    • 1
  • Meghana Nasre
    • 1
  1. 1.Indian Institute of Technology MadrasChennaiIndia
  2. 2.University of CaliforniaLos AngelesUSA

Personalised recommendations