Advertisement

Algorithmic Aspects on the Construction of Separating Codes

  • Marcel Fernandez
  • John LivieratosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11544)

Abstract

In this paper, we discuss algorithmic aspects of separating codes, that is, codes where any two subsets (of a specified size) of their code words have at least one position with distinct elements. More precisely we focus on the (non trivial) case of binary 2-separating codes. Firstly, we use the Lovász Local Lemma to obtain a lower bound on the existence of such codes that matches the previously best known lower bound. Then, we use the algorithmic version of the Lovász Local Lemma to construct such codes and discuss its implications regarding computational complexity. Finally, we obtain explicit separating codes, with computational complexity polynomial in the length of the code and with rate larger than the well-known Simplex code.

Keywords

Separating codes Lovász Local Lemma Moser-Tardos constructive proof 

References

  1. 1.
    Achlioptas, D., Iliopoulos, F.: Random walks that find perfect objects and the Lovász local lemma. J. ACM (JACM) 63(3), 22 (2016)CrossRefGoogle Scholar
  2. 2.
    Barg, A., Blakley, G.R., Kabatiansky, G.A.: Digital fingerprinting codes: problem statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(4), 852–865 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Deng, D., Stinson, D.R., Wei, R.: The Lovász local lemma and its applications to some combinatorial arrays. Des. Codes Crypt. 32(1–3), 121–134 (2004)CrossRefGoogle Scholar
  4. 4.
    Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. Infin. Finite Sets 10, 609–627 (1975)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gebauer, H., Moser, R.A., Scheder, D., Welzl, E.: The Lovász local lemma and satisfiability. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 30–54. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03456-5_3CrossRefzbMATHGoogle Scholar
  6. 6.
    Gebauer, H., Szabó, T., Tardos, G.: The local lemma is tight for SAT. In: Proceedings 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 664–674. SIAM (2011)Google Scholar
  7. 7.
    Giotis, I., Kirousis, L., Psaromiligkos, K.I., Thilikos, D.M.: On the algorithmic Lovász local lemma and acyclic edge coloring. In: Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics. Society for Industrial and Applied Mathematics (2015). http://epubs.siam.org/doi/pdf/10.1137/1.9781611973761.2
  8. 8.
    Giotis, I., Kirousis, L., Psaromiligkos, K.I., Thilikos, D.M.: Acyclic edge coloring through the Lovász local lemma. Theoret. Comput. Sci. 665, 40–50 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Giotis, I., Kirousis, L., Livieratos, J., Psaromiligkos, K.I., Thilikos, D.M.: Alternative proofs of the asymmetric Lovász local lemma and Shearer’s lemma. In: Proceedings of the 11th International Conference on Random and Exhaustive Generation of Combinatorial Structures, GASCom (2018). http://ceur-ws.org/Vol-2113/paper15.pdf
  10. 10.
    Harvey, N.J., Vondrák, J.: An algorithmic proof of the Lovász local lemma via resampling oracles. In: Proceedings 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1327–1346. IEEE (2015)Google Scholar
  11. 11.
    Kirousis, L., Livieratos, J.: A simple algorithmic proof of the symmetric lopsided Lovász local lemma. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M. (eds.) LION 12 2018. LNCS, vol. 11353, pp. 49–63. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05348-2_5CrossRefGoogle Scholar
  12. 12.
    Körner, J., Simonyi, G.: Separating partition systems and locally different sequences. SIAM J. Discrete Math. 1(3), 355–359 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, vol. 16. Elsevier, Amsterdam (1977)zbMATHGoogle Scholar
  14. 14.
    Moser, R.A.: A constructive proof of the Lovász local lemma. In: Proceedings 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 343–350. ACM (2009)Google Scholar
  15. 15.
    Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM (JACM) 57(2), 11 (2010)CrossRefGoogle Scholar
  16. 16.
    Sagalovich, Y.L.: Separating systems. Problems Inform. Transmission 30(2), 105–123 (1994)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Sarkar, K., Colbourn, C.J.: Upper bounds on the size of covering arrays. SIAM J. Discrete Math. 31(2), 1277–1293 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms. Addison-Wesley, Boston (2013)zbMATHGoogle Scholar
  19. 19.
    Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Szegedy, M.: The Lovász local lemma – a survey. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 1–11. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38536-0_1CrossRefGoogle Scholar
  21. 21.
    Tao, T.: Moser’s entropy compression argument (2009). https://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Network EngineeringUniversitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Department of MathematicsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations