Advertisement

Internal Versus External Balancing in the Evaluation of Graph-Based Number Types

  • Hanna Geppert
  • Martin WilhelmEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11544)

Abstract

Number types for exact computation are usually based on directed acyclic graphs. A poor graph structure can impair the efficency of their evaluation. In such cases the performance of a number type can be drastically improved by restructuring the graph or by internally balancing error bounds with respect to the graph’s structure. We compare advantages and disadvantages of these two concepts both theoretically and experimentally.

References

  1. 1.
    IEEE standard for floating-point arithmetic: IEEE Std 754–2008, pp. 1–70 (2008)Google Scholar
  2. 2.
    Borassi, M.: A note on the complexity of computing the number of reachable vertices in a digraph. Inf. Process. Lett. 116(10), 628–630 (2016).  https://doi.org/10.1016/j.ipl.2016.05.002MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brent, R.P.: The parallel evaluation of general arithmetic expressions. J. ACM 21(2), 201–206 (1974).  https://doi.org/10.1145/321812.321815MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    van der Hoeven, J.: Computations with effective real numbers. Theor. Comput. Sci. 351(1), 52–60 (2006).  https://doi.org/10.1016/j.tcs.2005.09.060MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Majithia, J.C., Levan, D.: A note on base-2 logarithm computations. Proc. IEEE 61(10), 1519–1520 (1973).  https://doi.org/10.1109/PROC.1973.9318CrossRefGoogle Scholar
  6. 6.
    Mehlhorn, K., Näher, S.: LEDA a library of efficient data types and algorithms. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 88–106. Springer, Heidelberg (1989).  https://doi.org/10.1007/3-540-51486-4_58CrossRefGoogle Scholar
  7. 7.
    Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans. Program. Lang. Syst. 30(3), 12:1–12:41 (2008).  https://doi.org/10.1145/1353445.1353446CrossRefGoogle Scholar
  8. 8.
    Mörig, M., Rössling, I., Schirra, S.: On design and implementation of a generic number type for real algebraic number computations based on expression dags. Math. Comput. Sci. 4(4), 539–556 (2010).  https://doi.org/10.1007/s11786-011-0086-1MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mörig, M., Schirra, S.: Precision-driven computation in the evaluation of expression-dags with common subexpressions: problems and solutions. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 451–465. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32859-1_39CrossRefzbMATHGoogle Scholar
  10. 10.
    Schirra, S.: Robustness and precision issues in geometric computation. In: Handbook of Computational Geometry, pp. 597–632. Elsevier (2000)Google Scholar
  11. 11.
    Wilhelm, M.: Balancing expression dags for more efficient lazy adaptive evaluation. In: Blömer, J., Kotsireas, I.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 19–33. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72453-9_2CrossRefGoogle Scholar
  12. 12.
    Wilhelm, M.: Multithreading for the expression-dag-based number type Real\(\_\)algebraic. Technical Report FIN-001-2018, Otto-von-Guericke-Universität, Magdeburg (2018)Google Scholar
  13. 13.
    Wilhelm, M.: On error representation in exact-decisions number types. In: Proceedings of the 30th Canadian Conference on Computational Geometry, CCCG, pp. 367–373 (2018)Google Scholar
  14. 14.
    Wilhelm, M.: Restructuring expression dags for efficient parallelization. In: 17th International Symposium on Experimental Algorithms, SEA, pp. 20:1–20:13 (2018).  https://doi.org/10.4230/LIPIcs.SEA.2018.20
  15. 15.
    Yap, C.: Towards exact geometric computation. Comput. Geom. 7, 3–23 (1997).  https://doi.org/10.1016/0925-7721(95)00040-2MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of core 2: a library for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15582-6_24CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Otto-von-Guericke UniversitätMagdeburgGermany

Personalised recommendations