Minimum and Maximum Category Constraints in the Orienteering Problem with Time Windows

  • Konstantinos Ameranis
  • Nikolaos VathisEmail author
  • Dimitris Fotakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11544)


We introduce a new variation of the Orienteering Problem (OP), the Minimum-Maximum Category Constraints Orienteering Problem with Time Windows. In the Orienteering Problem we seek to determine a path from node \( S \) to node \( T \) in a weighted graph where each node has a score. The total weight of the path must not exceed a predetermined budget and the goal is to maximize the total score. In this variation, each Activity is associated with a category and the final solution is required to contain at least a minimum and at most a maximum of specific categories. This variation better captures the problem of tourists visiting cities. For example, the tourists can decide to visit exactly one restaurant at a specific time window and at least one park. We present a Replace Local Search and an Iterated Local Search which utilizes Stochastic Gradient Descent to identify the tightness of the constraints. We perform exhaustive experimental evaluation of our results against state of the art implementations for the unconstrained problem and examine how it performs against increasingly more restricting settings.


Orienteering Local Search Integer Programming Heuristics Category constraints 


  1. 1.
    The orienteering problem: Test instances.
  2. 2.
    Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering problem. J. Heuristics 13(1), 49–76 (2007)CrossRefGoogle Scholar
  3. 3.
    Bolzoni, P., Helmer, S.: Hybrid best-first greedy search for orienteering with category constraints. In: Gertz, M., et al. (eds.) SSTD 2017. LNCS, vol. 10411, pp. 24–42. Springer, Cham (2017). Scholar
  4. 4.
    Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for team orienteering problems. 4OR 5(3), 211–230 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Campos, V., Martí, R., Sánchez-Oro, J., Duarte, A.: Grasp with path relinking for the orienteering problem. J. Oper. Res. Soc. 65(12), 1800–1813 (2014)CrossRefGoogle Scholar
  6. 6.
    Chao, I.M., Golden, B.L., Wasil, E.A.: A fast and effective heuristic for the orienteering problem. Eur. J. Oper. Res. 88(3), 475–489 (1996)CrossRefGoogle Scholar
  7. 7.
    Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J. Oper. Res. 88(3), 464–474 (1996)CrossRefGoogle Scholar
  8. 8.
    Dang, D.-C., El-Hajj, R., Moukrim, A.: A branch-and-cut algorithm for solving the team orienteering problem. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 332–339. Springer, Heidelberg (2013). Scholar
  9. 9.
    Dang, D.-C., Guibadj, R.N., Moukrim, A.: A PSO-based memetic algorithm for the team orienteering problem. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 471–480. Springer, Heidelberg (2011). Scholar
  10. 10.
    Dang, D.C., Guibadj, R.N., Moukrim, A.: An effective PSO-inspired algorithm for the team orienteering problem. Eur. J. Oper. Res. 229(2), 332–344 (2013)CrossRefGoogle Scholar
  11. 11.
    Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits. Transp. Sci. 39(2), 188–205 (2005)CrossRefGoogle Scholar
  12. 12.
    Ferreira, J., Quintas, A., Oliveira, J.A., Pereira, G.A.B., Dias, L.: Solving the team orienteering problem: developing a solution tool using a genetic algorithm approach. In: Snášel, V., Krömer, P., Köppen, M., Schaefer, G. (eds.) Soft Computing in Industrial Applications. AISC, vol. 223, pp. 365–375. Springer, Cham (2014). Scholar
  13. 13.
    Fischetti, M., Gonzalez, J.J.S., Toth, P.: Solving the orienteering problem through branch-and-cut. Inf. J. Comput. 10(2), 133–148 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gambardella, L.M., Montemanni, R., Weyland, D.: An enhanced ant colony system for the sequential ordering problem. In: Klatte, D., Lüthi, H.J., Schmedders, K. (eds.) Operations Research Proceedings 2011. Operations Research Proceedings (GOR (Gesellschaft für Operations Research e.V.)), pp. 355–360. Springer, Heidelberg (2012). Scholar
  15. 15.
    Gendreau, M., Laporte, G., Semet, F.: A branch-and-cut algorithm for the undirected selective traveling salesman problem. Networks 32(4), 263–273 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective travelling salesman problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998)CrossRefGoogle Scholar
  17. 17.
    Golden, B., Levy, L., Dahl, R.: Two generalizations of the traveling salesman problem. Omega 9(4), 439–441 (1981)CrossRefGoogle Scholar
  18. 18.
    Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Nav. Res. Logist. 34(3), 307–318 (1987)CrossRefGoogle Scholar
  19. 19.
    Gunawan, A., Lau, H.C., Lu, K.: An iterated local search algorithm for solving the orienteering problem with time windows. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 61–73. Springer, Cham (2015). Scholar
  20. 20.
    Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 33–65. Springer, Boston (2005). Scholar
  21. 21.
    Ke, L., Archetti, C., Feng, Z.: Ants can solve the team orienteering problem. Comput. Ind. Eng. 54(3), 648–665 (2008)CrossRefGoogle Scholar
  22. 22.
    Laporte, G., Martello, S.: The selective travelling salesman problem. Discret. Appl. Math. 26(2–3), 193–207 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Leifer, A.C., Rosenwein, M.B.: Strong linear programming relaxations for the orienteering problem. Eur. J. Oper. Res. 73(3), 517–523 (1994)CrossRefGoogle Scholar
  24. 24.
    Liang, Y.C., Kulturel-Konak, S., Lo, M.H.: A multiple-level variable neighborhood search approach to the orienteering problem. J. Ind. Prod. Eng. 30(4), 238–247 (2013)Google Scholar
  25. 25.
    Lin, S.W., Vincent, F.Y.: Solving the team orienteering problem with time windows and mandatory visits by multi-start simulated annealing. Comput. Ind. Eng. 114, 195–205 (2017)CrossRefGoogle Scholar
  26. 26.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Springer, Boston (2003). Scholar
  27. 27.
    Lu, Y., Benlic, U., Wu, Q.: A memetic algorithm for the orienteering problem with mandatory visits and exclusionary constraints. Eur. J. Oper. Res. 268(1), 54–69 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Marinakis, Y., Politis, M., Marinaki, M., Matsatsinis, N.: A memetic-GRASP algorithm for the solution of the orienteering problem. In: Le Thi, H.A., Pham Dinh, T., Nguyen, N.T. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences. AISC, vol. 360, pp. 105–116. Springer, Cham (2015). Scholar
  29. 29.
    Montemanni, R., Gambardella, L.M.: An ant colony system for team orienteering problems with time windows. Found. Comput. Decis. Sci. 34(4), 287 (2009)zbMATHGoogle Scholar
  30. 30.
    Muthuswamy, S., Lam, S.S.: Discrete particle swarm optimization for the team orienteering problem. Memetic Comput. 3(4), 287–303 (2011)CrossRefGoogle Scholar
  31. 31.
    Ramesh, R., Yoon, Y.S., Karwan, M.H.: An optimal algorithm for the orienteering tour problem. ORSA J. Comput. 4(2), 155–165 (1992)CrossRefGoogle Scholar
  32. 32.
    Ramesh, R., Brown, K.M.: An efficient four-phase heuristic for the generalized orienteering problem. Comput. Oper. Res. 18(2), 151–165 (1991)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Righini, G., Salani, M.: Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. Comput. Oper. Res. 36(4), 1191–1203 (2009)CrossRefGoogle Scholar
  34. 34.
    Şevkli, A.Z., Sevilgen, F.E.: StPSO: strengthened particle swarm optimization. Turk. J. Electr. Eng. Comput. Sci. 18(6), 1095–1114 (2010)Google Scholar
  35. 35.
    Şevkli, Z., Sevilgen, F.E.: Discrete particle swarm optimization for the orienteering problem. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)Google Scholar
  36. 36.
    Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.: The multiconstraint team orienteering problem with multiple time windows. Transp. Sci. 47(1), 53–63 (2013)CrossRefGoogle Scholar
  37. 37.
    Sylejmani, K., Dorn, J., Musliu, N.: A tabu search approach for multi constrained team orienteering problem and its application in touristic trip planning. In: 2012 12th International Conference on Hybrid Intelligent Systems (HIS), pp. 300–305. IEEE (2012)Google Scholar
  38. 38.
    Thomadsen, T., Stidsen, T.K.: The quadratic selective travelling salesman problem. Technical report (2003)Google Scholar
  39. 39.
    Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35, 797–809 (1984)CrossRefGoogle Scholar
  40. 40.
    Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Iterated local search for the team orienteering problem with time windows. Comput. Oper. Res. 36(12), 3281–3290 (2009)CrossRefGoogle Scholar
  41. 41.
    Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Metaheuristics for tourist trip planning. In: Sörensen, K., Sevaux, M., Habenicht, W., Geiger, M. (eds.) Metaheuristics in the Service Industry, pp. 15–31. Springer, Heidelberg (2009). Scholar
  42. 42.
    Vincent, F.Y., Lin, S.W.: Multi-start simulated annealing heuristic for the location routing problem with simultaneous pickup and delivery. Appl. Soft Comput. 24, 284–290 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Konstantinos Ameranis
    • 1
  • Nikolaos Vathis
    • 2
    Email author
  • Dimitris Fotakis
    • 2
  1. 1.Boston UniversityBostonUSA
  2. 2.National Technical University of AthensZografouGreece

Personalised recommendations