Advertisement

Quantum-Inspired Evolutionary Algorithms for Covering Arrays of Arbitrary Strength

  • Michael Wagner
  • Ludwig Kampel
  • Dimitris E. SimosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11544)

Abstract

The construction of covering arrays, the combinatorial structures underlying combinatorial test suites, is a highly researched topic. In previous works, various metaheuristic algorithms, such as Simulated Annealing and Tabu Search, were used to successfully construct covering arrays with a small number of rows. In this paper, we propose for the first time a quantum-inspired evolutionary algorithm for covering array generation. For this purpose, we introduce a simpler and more natural qubit representation as well as new rotation and mutation operators. We implemented different versions of our algorithm employing the different operators. We evaluate the different implementations against selected (optimal) covering array instances.

Keywords

Optimization Covering arrays Quantum algorithms 

Notes

Acknowledgements

This research was carried out partly in the context of the Austrian COMET K1 program and publicly funded by the Austrian Research Promotion Agency (FFG) and the Vienna Business Agency (WAW).

References

  1. 1.
    Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 454, August 1997Google Scholar
  2. 2.
    Colbourn, C.J.: Covering Array Tables for t = 2, 3, 4, 5, 6. http://www.public.asu.edu/~ccolbou/src/tabby/catable.html. Accessed 26 Feb 2019
  3. 3.
    Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Mathematiche LIX((I–II)), 125–172 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Danziger, P., Mendelsohn, E., Moura, L., Stevens, B.: Covering arrays avoiding forbidden edges. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 296–308. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85097-7_28CrossRefGoogle Scholar
  5. 5.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC 1996, pp. 212–219. ACM, New York (1996)Google Scholar
  6. 6.
    Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6(6), 580–593 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithms with a new termination criterion, h/sub /spl epsi// gate, and two-phase scheme. IEEE Trans. Evol. Comput. 8(2), 156–169 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Han, K.H., Kim, J.H.: On the analysis of the quantum-inspired evolutionary algorithm with a single individual. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 2622–2629, July 2006Google Scholar
  9. 9.
    Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the covering test problem. Constraints 11(2), 199–219 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kampel, L., Simos, D.E.: A survey on the state of the art of complexity problems for covering arrays. Theor. Comput. Sci. (2019).  https://doi.org/10.1016/j.tcs.2019.10.019CrossRefGoogle Scholar
  11. 11.
    Kleine, K., Simos, D.E.: An efficient design and implementation of the in-parameter-order algorithm. Math. Comput. Sci. 12(1), 51–67 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman & Hall/CRC Innovations in Software Engineering and Software Development Series. Taylor & Francis, Routledge (2013)zbMATHGoogle Scholar
  13. 13.
    Lei, Y., Tai, K.C.: In-parameter-order: a test generation strategy for pairwise testing. In: Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No. 98EX231), pp. 254–261, November 1998Google Scholar
  14. 14.
    Martí, R., Pardalos, P., Resende, M.: Handbook of Heuristics. Springer, Heidelberg (2018)CrossRefGoogle Scholar
  15. 15.
    Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized post-optimization of covering arrays. Eur. J. Comb. 34(1), 91–103 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2002)zbMATHGoogle Scholar
  17. 17.
    Seroussi, G., Bshouty, N.H.: Vector sets for exhaustive testing of logic circuits. IEEE Trans. Inf. Theory 34(3), 513–522 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, November 1994Google Scholar
  19. 19.
    Torres-Jimenez, J., Izquierdo-Marquez, I.: Survey of covering arrays. In: 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 20–27, September 2013Google Scholar
  20. 20.
    Torres-Jimenez, J., Rodriguez-Tello, E.: New bounds for binary covering arrays using simulated annealing. Inf. Sci. 185(1), 137–152 (2012)CrossRefGoogle Scholar
  21. 21.
    Yanofsky, N.S., Mannucci, M.A., Mannucci, M.A.: Quantum Computing for Computer Scientists, vol. 20. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  22. 22.
    Zhang, G.: Quantum-inspired evolutionary algorithms: a survey and empirical study. J. Heuristics 17(3), 303–351 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Wagner
    • 1
  • Ludwig Kampel
    • 1
  • Dimitris E. Simos
    • 1
    Email author
  1. 1.SBA ResearchViennaAustria

Personalised recommendations