Advertisement

Effective Heuristics for Matchings in Hypergraphs

  • Fanny Dufossé
  • Kamer Kaya
  • Ioannis PanagiotasEmail author
  • Bora Uçar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11544)

Abstract

The problem of finding a maximum cardinality matching in a d-partite, d-uniform hypergraph is an important problem in combinatorial optimization and has been theoretically analyzed. We first generalize some graph matching heuristics for this problem. We then propose a novel heuristic based on tensor scaling to extend the matching via judicious hyperedge selections. Experiments on random, synthetic and real-life hypergraphs show that this new heuristic is highly practical and superior to the others on finding a matching with large cardinality.

Keywords

d-dimensional matching Tensor scaling Matching in hypergraphs Karp-Sipser heuristic 

References

  1. 1.
    Aharoni, R., Haxell, P.: Hall’s theorem for hypergraphs. J. Graph Theory 35(2), 83–88 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anastos, M., Frieze, A.: Finding perfect matchings in random cubic graphs in linear time. arXiv preprint arXiv:1808.00825 (2018)
  3. 3.
    Berman, P., Karpinski, M.: Improved approximation lower bounds on small occurence optimization. ECCC Report (2003)Google Scholar
  4. 4.
    Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman, Ser. A 5, 147–154 (1946)Google Scholar
  5. 5.
    Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI, vol. 5, p. 3 (2010)Google Scholar
  6. 6.
    Çatalyürek, Ü.V., Aykanat, C.: PaToH: A Multilevel Hypergraph Partitioning Tool, Version 3.0. Bilkent University, Department of Computer Engineering, Ankara, 06533 Turkey. https://www.cc.gatech.edu/~umit/software.html (1999)
  7. 7.
    Cohen, E.: Structure prediction and computation of sparse matrix products. J. Comb. Optim. 2(4), 307–332 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cygan, M.: Improved approximation for 3-dimensional matching via bounded pathwidth local search. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 509–518. IEEE (2013)Google Scholar
  9. 9.
    Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: the hypermatching assignment problem. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 342–351. SIAM (2013)Google Scholar
  10. 10.
    Devlin, P., Kahn, J.: Perfect fractional matchings in \(k\)-out hypergraphs. arXiv preprint arXiv:1703.03513 (2017)
  11. 11.
    Dufossé, F., Kaya, K., Panagiotas, I., Uçar, B.: Scaling matrices and counting perfect matchings in graphs. Technical Report RR-9161, Inria - Research Centre Grenoble - Rhône-Alpes (2018)Google Scholar
  12. 12.
    Dufossé, F., Kaya, K., Uçar, B.: Two approximation algorithms for bipartite matching on multicore architectures. J. Parallel Distr. Com. 85, 62–78 (2015)CrossRefGoogle Scholar
  13. 13.
    Dufossé, F., Kaya, K., Panagiotas, I., Uçar, B.: Approximation algorithms for maximum matchings in undirected graphs. In: Proceedings Seventh SIAM Workshop on Combinatorial Scientific Computing, pp. 56–65. SIAM, Bergen (2018)CrossRefGoogle Scholar
  14. 14.
    Dufossé, F., Kaya, K., Panagiotas, I., Uçar, B.: Effective heuristics for matchings in hypergraphs. Research Report RR-9224, Inria Grenoble Rhône-Alpes, November 2018. https://hal.archives-ouvertes.fr/hal-01924180
  15. 15.
    Dyer, M., Frieze, A.: Randomized greedy matching. Random Struct. Algorithms 2(1), 29–45 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Franklin, J., Lorenz, J.: On the scaling of multidimensional matrices. Linear Algebra Appl. 114, 717–735 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Frieze, A.M.: Maximum matchings in a class of random graphs. J. Comb. Theory B 40(2), 196–212 (1986)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Froger, A., Guyon, O., Pinson, E.: A set packing approach for scheduling passenger train drivers: the French experience. In: RailTokyo2015. Tokyo, Japan, March 2015. https://hal.archives-ouvertes.fr/hal-01138067
  19. 19.
    Globerson, A., Chechik, G., Pereira, F., Tishby, N.: Euclidean embedding of co-occurrence data. J. Mach. Learn. Res. 8, 2265–2295 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gottlob, G., Greco, G.: Decomposing combinatorial auctions and set packing problems. J. ACM 60(4), 24:1–24:39 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Halldórsson, M.M.: Approximating discrete collections via local improvements. In: SODA, vol. 95, pp. 160–169 (1995)Google Scholar
  22. 22.
    Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-dimensional matching. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM -2003. LNCS, vol. 2764, pp. 83–97. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45198-3_8CrossRefGoogle Scholar
  23. 23.
    Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating \(k\)-set packing. Comput. Complex. 15(1), 20–39 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every \(t\) of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math. 2(1), 68–72 (1989)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Karoński, M., Pittel, B.: Existence of a perfect matching in a random (\(1+e^{-1}\))-out bipartite graph. J. Comb. Theory B 88(1), 1–16 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Karp, R.M., Sipser, M.: Maximum matching in sparse random graphs. In: FOCS 1981, Nashville, TN, USA, pp. 364–375 (1981)Google Scholar
  27. 27.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972).  https://doi.org/10.1007/978-1-4684-2001-2_9CrossRefGoogle Scholar
  28. 28.
    Kaya, O., Uçar, B.: Scalable sparse tensor decompositions in distributed memory systems. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. SC 2015, pp. 77:1–77:11. ACM, Austin (2015)Google Scholar
  29. 29.
    Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R.F.: Finding Near-Optimal Independent Sets at Scale. In: Proceedings of the 16th Meeting on Algorithm Engineering and Exerpimentation (ALENEX’16) (2016)Google Scholar
  30. 30.
    Pothen, A., Fan, C.J.: Computing the block triangular form of a sparse matrix. ACM T. Math. Software 16, 303–324 (1990)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Shetty, J., Adibi, J.: The enron email dataset database schema and brief statistical report. Information sciences institute technical report, University of Southern California 4 (2004)Google Scholar
  32. 32.
    Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pacific J. Math. 21, 343–348 (1967)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Smith, S., et al.: FROSTT: the formidable repository of open sparse tensors and tools (2017). http://frostt.io/
  34. 34.
    Walkup, D.W.: Matchings in random regular bipartite digraphs. Discrete Math. 31(1), 59–64 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Inria Grenoble Rhône-AlpesMontbonnot-Saint-MartinFrance
  2. 2.Sabanci UniversityIstanbulTurkey
  3. 3.ENS LyonLyonFrance
  4. 4.CNRS and LIP (UMR5668, CNRS - ENS Lyon - UCB Lyon 1 - INRIA)LyonFrance

Personalised recommendations