Improved Contraction Hierarchy Queries via Perfect Stalling

  • Stefan Funke
  • Thomas MendelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11544)


Contraction Hierarchies (CH) are one of the most relevant techniques for accelerating shortest path-queries on road networks in practice. We reconsider the CH query routine and devise an additional preprocessing step which gathers auxiliary information such that CH queries can be answered even faster than before. Compared to the standard CH query, response times decrease by more than 70%; compared to a well-known refined CH query routine with so-called stall-on-demand, response times still decrease by more than 33% on average. While faster speed-up schemes like hub labels incur a serious space overhead, our precomputed auxiliary information takes less space than the graph representation itself.


Shortest path Contraction Hierarchies 


  1. 1.
  2. 2.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 24–35. Springer, Heidelberg (2012). Scholar
  3. 3.
    Bast, H., et al.: Route planning in transportation networks. CoRR, abs/1504.05140 (2015)Google Scholar
  4. 4.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: ALENEX. SIAM (2007)Google Scholar
  5. 5.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit nodes. Science 316(5824), 566 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. In: ALENEX, pp. 13–26. SIAM (2008)Google Scholar
  7. 7.
    Blum, J., Funke, S., Storandt, S.: Sublinear search spaces for shortest path planning in grid and road networks. In: AAAI, pp. 6119–6126. AAAI Press (2018)Google Scholar
  8. 8.
    Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for XXL data sets. Softw. Pract. Exper. 38(6), 589–637 (2008)CrossRefGoogle Scholar
  9. 9.
    Funke, S., Storandt, S.: Provable efficiency of contraction hierarchies with randomized preprocessing. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 479–490. Springer, Heidelberg (2015). Scholar
  10. 10.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)CrossRefGoogle Scholar
  11. 11.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for a*: efficient point-to-point shortest path algorithms. In: ALENEX, pp. 129–143. SIAM (2006)Google Scholar
  12. 12.
    Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road networks. In: ALENEX/ANALCO, pp. 100–111. SIAM (2004)Google Scholar
  13. 13.
    Sanders, P., Schultes, D.: Engineering highway hierarchies. ACM J. Exp. Algorithmics, 17(1) (2012) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universität StuttgartStuttgartGermany

Personalised recommendations