Advertisement

Multifaceted Oncogenic Role of Adipocytes in the Tumour Microenvironment

  • Yannasittha Jiramongkol
  • Eric W.-F. LamEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1219)

Abstract

Obesity has for decades been recognised as one of the major health concerns. Recently accumulated evidence has established that obesity or being overweight is strongly linked to an increased risk of cancer. However, it is still not completely clear how adipose tissue (fat), along with other stromal connective tissues and cells, contribute to tumour initiation and progression. In the tumour microenvironment, the adipose tissue cells, in particular the adipocytes, secrete a number of adipokines, including growth factors, hormones, collagens, fatty acids, and other metabolites as well as extracellular vesicles to shape and condition the tumour and its microenvironment. In fact, the adipocytes, through releasing these factors and materials, can directly and indirectly facilitate cancer cell proliferation, apoptosis, metabolism, angiogenesis, metastasis and even chemotherapy resistance. In this chapter, the multidimensional role played by adipocytes, a major and functional component of the adipose tissue, in promoting cancer development and progression within the tumour microenvironment will be discussed.

Keywords

Tumour microenvironment Obesity Adipocytes Secretosomes Fatty acids Tumorigenesis and therapeutic resistance 

References

  1. Abel M (2012) Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. Cambridge Scholars Publishing, Newcastle upon TyneGoogle Scholar
  2. Al-Hamodi Z, Al-Habori M, Al-Meeri A, Saif-Ali R (2014) Association of adipokines, leptin/adiponectin ratio and C-reactive protein with obesity and type 2 diabetes mellitus. Diabetol Metab Syndr 6:99PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amemori S, Ootani A, Aoki S, Fujise T, Shimoda R, Kakimoto T, Shiraishi R, Sakata Y, Tsunada S, Iwakiri R, Fujimoto K (2007) Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol 292:G923–G929PubMedCrossRefGoogle Scholar
  4. Amin MN, Hussain MS, Sarwar MS, Rahman Moghal MM, Das A, Hossain MZ, Chowdhury JA, Millat MS, Islam MS (2019) How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab Syndr 13:1213–1224PubMedCrossRefGoogle Scholar
  5. Amri EZ, Ailhaud G, Grimaldi PA (1994) Fatty acids as signal transducing molecules: involvement in the differentiation of preadipose to adipose cells. J Lipid Res 35:930–937PubMedGoogle Scholar
  6. Amy LS, Jason FO, Brandi AB, Lyndsay VR, Dorothy TP, Tucker HA, Claire L, Annie CB, Maria FD, Shijia Z, Jeffrey MG, Matthew EB, Bruce AB (2015) Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res 17:112CrossRefGoogle Scholar
  7. Aoki S, Tsunada S, Ootani A, Shimoda R, Sakata Y, Kakimoto T, Fujise T, Iwakiri R, Fujimoto K, Amemori S, Shiraishi R (2007) Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol 292:G923CrossRefGoogle Scholar
  8. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J-I, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83CrossRefGoogle Scholar
  9. Ashizawa N, Yahata T, Quan J, Adachi S, Yoshihara K, Tanaka K (2010) Serum leptin–adiponectin ratio and endometrial cancer risk in postmenopausal female subjects. Gynecol Oncol 119:65–69PubMedCrossRefGoogle Scholar
  10. Balaban S, Shearer RF, Lee LS, Van Geldermalsen M, Schreuder M, Shtein HC, Cairns R, Thomas KC, Fazakerley DJ, Grewal T, Holst J, Saunders DN, Hoy AJ (2017) Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab 5:1PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bartucci M, Svensson S, Ricci-Vitiani L, Dattilo R, Biffoni M, Signore M, Ferla R, De Maria R, Surmacz E (2010) Obesity hormone leptin induces growth and interferes with the cytotoxic effects of 5-fluorouracil in colorectal tumor stem cells. Endocr Relat Cancer 17:823–833PubMedCrossRefGoogle Scholar
  12. Behan JW, Yun JP, Proektor MP, Ehsanipour EA, Arutyunyan A, Moses AS, Avramis VI, Louie SG, Butturini A, Heisterkamp N, Mittelman SD (2009) Adipocytes impair leukemia treatment in mice. Cancer Res 69:7867–7874PubMedPubMedCentralCrossRefGoogle Scholar
  13. Birsoy K, Festuccia WT, Laplante M (2013) A comparative perspective on lipid storage in animals. J Cell Sci 126:1541–1552PubMedCrossRefGoogle Scholar
  14. Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, Couderc B, Escourrou G, Valet P, Muller C (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73:5657–5668PubMedCrossRefGoogle Scholar
  15. Bremnes RM, Donnem T, Al-Saad S, Al-Shibli K, Andersen S, Sirera R, Camps C, Marinez I, Busund LT (2011) The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 6:209–217PubMedCrossRefGoogle Scholar
  16. Brian GR, Jeffrey MG, Mei S, Muralidharan A, Ryan KJ, Trivia PF, Majdouline A, Eduardo AL, Paul LF, Robert K, Ernest SC (2014) Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts. PLoS One 9:e89595CrossRefGoogle Scholar
  17. Buchsbaum RJ, Oh SY (2016) Breast cancer-associated fibroblasts: where we are and where we need to go. Cancers (Basel) 8(2):19CrossRefGoogle Scholar
  18. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 18:84PubMedPubMedCentralCrossRefGoogle Scholar
  19. Byon CH, Hardy RW, Ren C, Ponnazhagan S, Welch DR, Mcdonald JM, Chen Y (2009) Free fatty acids enhance breast cancer cell migration through plasminogen activator inhibitor-1 and SMAD4. Lab Invest 89:1221–1228PubMedPubMedCentralCrossRefGoogle Scholar
  20. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591PubMedPubMedCentralCrossRefGoogle Scholar
  21. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S adults. N Engl J Med 348:1625–1638PubMedCrossRefGoogle Scholar
  22. Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18:478–489PubMedCrossRefGoogle Scholar
  23. Carine C, Bernard M, Marie-Noëlle M, Stéphanie B, Patrick A, Emmanuel Van O, Sophie T-D (2003) Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 278:11888–11896CrossRefGoogle Scholar
  24. Chen S, Chen C-M, Zhou Y, Zhou R-J, Yu K-D, Shao Z-M (2012) Obesity or overweight is associated with worse pathological response to neoadjuvant chemotherapy among Chinese women with breast cancer. PLoS One e41380:7Google Scholar
  25. Chi M, Chen J, Ye Y, Tseng H-Y, Lai F, Tay KH, Jin L, Guo ST, Jiang CC, Zhang XD (2014) Adipocytes contribute to resistance of human melanoma cells to chemotherapy and targeted therapy. Curr Med Chem 21:1255–1267PubMedCrossRefGoogle Scholar
  26. Chmurzynska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48PubMedCrossRefGoogle Scholar
  27. Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10PubMedCrossRefGoogle Scholar
  28. Cui Y, Song M, Kim SY (2019) Prognostic significance of fatty acid binding protein-4 in the invasive ductal carcinoma of the breast. Pathol Int 69:68–75PubMedCrossRefGoogle Scholar
  29. D’esposito V, Passaretti F, Hammarstedt A, Liguoro D, Terracciano D, Molea G, Canta L, Miele C, Smith U, Beguinot F, Formisano P (2012) Adipocyte-released insulin-like growth factor-1 is regulated by glucose and fatty acids and controls breast cancer cell growth in vitro. Diabetologia 55:2811–2822PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dalamaga M, Diakopoulos KN, Mantzoros CS (2012) The role of adiponectin in cancer: a review of current evidence. Endocr Rev 33:547–594PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dali-Youcef N, Hnia K, Blaise S, Messaddeq N, Blanc S, Postic C, Valet P, Tomasetto C, Rio M-C (2016) Matrix metalloproteinase 11 protects from diabesity and promotes metabolic switch. Sci Rep 6:25140PubMedPubMedCentralCrossRefGoogle Scholar
  32. Darimont C, Vassaux G, Ailhaud G, Negrel R (1994) Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. Endocrinology 135:2030–2036PubMedCrossRefGoogle Scholar
  33. Diedrich JD, Rajagurubandara E, Herroon MK, Mahapatra G, Huttemann M, Podgorski I (2016) Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation. Oncotarget 7:64854–64877PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dieudonne M-N, Bussiere M, Dos Santos E, Leneveu M-C, Giudicelli Y, Pecquery R (2006) Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun 345:271–279PubMedCrossRefGoogle Scholar
  35. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, Garrido I, Escourrou G, Valet P, Muller C (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71:2455–2465PubMedCrossRefGoogle Scholar
  36. Duong MN, Geneste A, Fallone F, Li X, Dumontet C, Muller C (2017) The fat and the bad: mature adipocytes, key actors in tumor progression and resistance. Oncotarget 8:57622–57641PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ehsanipour EA, Sheng X, Behan JW, Wang X, Butturini A, Avramis VI, Mittelman SD (2013) Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine. Cancer Res 73:2998–3006PubMedPubMedCentralCrossRefGoogle Scholar
  38. Elliott BE, Tam SP, Dexter D, Chen ZQ (1992) Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: effect of estrogen and progesterone. Int J Cancer 51:416–424PubMedCrossRefGoogle Scholar
  39. Endo H, Hosono K, Uchiyama T, Sakai E, Sugiyama M, Takahashi H, Nakajima N, Wada K, Takeda K, Nakagama H, Nakajima A (2011) Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut 60:1363–1371PubMedCrossRefGoogle Scholar
  40. Finley D, Calvert V, Inokuchi J, Lau A, Narula N, Petricoin E, Zaldivar F, Santos R, Tyson D, Ornstein D (2009) Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness. J Urol 182:1621–1627PubMedCrossRefGoogle Scholar
  41. Fletcher SJ, Sacca PA, Pistone-Creydt M, Colo FA, Serra MF, Santino FE, Sasso CV, Lopez-Fontana CM, Caron RW, Calvo JC, Pistone-Creydt V (2017) Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer. J Exp Clin Cancer Res 36:26PubMedPubMedCentralCrossRefGoogle Scholar
  42. Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489–503PubMedPubMedCentralCrossRefGoogle Scholar
  43. Garofalo C, Surmacz E (2006) Leptin and cancer. J Cell Physiol 207:12–22PubMedCrossRefGoogle Scholar
  44. Gehmert S, Gehmert S, Prantl L, Vykoukal J, Alt E, Song Y-H (2010) Breast cancer cells attract the migration of adipose tissue-derived stem cells via the PDGF-BB/PDGFR-β signaling pathway. Biochem Biophys Res Commun 398:601–605PubMedCrossRefGoogle Scholar
  45. Gonzalez-Perez RR, Xu Y, Guo S, Watters A, Zhou W, Leibovich SJ (2010) Leptin upregulates VEGF in breast cancer via canonic and non-canonical signalling pathways and NFκB/HIF-1α activation. Cell Signal 22:1350–1362PubMedPubMedCentralCrossRefGoogle Scholar
  46. Griner SE, Wang KJ, Joshi JP, Nahta R (2013) Mechanisms of adipocytokine-mediated trastuzumab resistance in HER2-positive breast cancer cell lines. Curr Pharmacogen Personal Med 11:31–41CrossRefGoogle Scholar
  47. Guaita-Esteruelas S, Bosquet A, Saavedra P, Guma J, Girona J, Lam EW, Amillano K, Borras J, Masana L (2017) Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins. Mol Carcinog 56:208–217PubMedCrossRefGoogle Scholar
  48. Haczeyni F, Bell-Anderson KS, Farrell GC (2018) Causes and mechanisms of adipocyte enlargement and adipose expansion. Obes Rev 19:406–420PubMedCrossRefGoogle Scholar
  49. Han Suk R, Han-Byoel L, Wonshik H, Dong-Young N, Hyeong-Gon M (2015) Reduced proliferation in breast cancer cells contacting the neighboring adipocytes in human breast cancer tissues. Breast Cancer Res 17:90CrossRefGoogle Scholar
  50. Han L, Xu J, Xu Q, Zhang B, Lam EW, Sun Y (2017) Extracellular vesicles in the tumor microenvironment: therapeutic resistance, clinical biomarkers, and targeting strategies. Med Res Rev 37:1318–1349PubMedCrossRefGoogle Scholar
  51. Han L, Lam EW, Sun Y (2019) Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Mol Cancer 18:59PubMedPubMedCentralCrossRefGoogle Scholar
  52. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, Podgorski I (2013) Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget 4:2108PubMedPubMedCentralCrossRefGoogle Scholar
  53. Horowitz NS, Wright AA (2015) Impact of obesity on chemotherapy management and outcomes in women with gynecologic malignancies. Gynecol Oncol 138:201–206PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hovey RC, Mcfadden TB, Akers RM (1999) Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J Mammary Gland Biol Neoplasia 4:53–68PubMedCrossRefGoogle Scholar
  55. Hoy AJ, Balaban S, Saunders DN (2017) Adipocyte–tumor cell metabolic crosstalk in breast cancer. Trends Mol Med 23:381–392PubMedCrossRefGoogle Scholar
  56. Hu W, Ru Z, Zhou Y, Xiao W, Sun R, Zhang S, Gao Y, Li X, Zhang X, Yang H (2019) Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. Biochim Biophys Acta Mol Cell Biol Lipids 1864:1091–1102PubMedCrossRefGoogle Scholar
  57. Hua TNM, Kim MK, Vo VTA, Choi JW, Choi JH, Kim HW, Cha SK, Park KS, Jeong Y (2019) Inhibition of oncogenic Src induces FABP4-mediated lipolysis via PPARgamma activation exerting cancer growth suppression. EBioMedicine 41:134–145PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huang M, Narita S, Inoue T, Koizumi A, Saito M, Tsuruta H, Numakura K, Satoh S, Nanjo H, Sasaki T, Habuchi T (2017) Fatty acid binding protein 4 enhances prostate cancer progression by upregulating matrix metalloproteinases and stromal cell cytokine production. Oncotarget 8:111780–111794PubMedPubMedCentralGoogle Scholar
  59. Ishikawa M, Kitayama J, Nagawa H (2004) Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin Cancer Res 10:4325–4331PubMedCrossRefGoogle Scholar
  60. Ishikawa M, Kitayama J, Yamauchi T, Kadowaki T, Maki T, Miyato H, Yamashita H, Nagawa H (2007) Adiponectin inhibits the growth and peritoneal metastasis of gastric cancer through its specific membrane receptors AdipoR1 and AdipoR2. Cancer Sci 98:1120–1127PubMedCrossRefGoogle Scholar
  61. Jia L, Wang S, Cao J, Zhou H, Wei W, Zhang J (2007) siRNA targeted against matrix metalloproteinase 11 inhibits the metastatic capability of murine hepatocarcinoma cell Hca-F to lymph nodes. Int J Biochem Cell Biol 39:2049–2062PubMedCrossRefGoogle Scholar
  62. Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L, Song Y-H (2010) Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors. Anal Cell Pathol (Amst) 33:61–79CrossRefGoogle Scholar
  63. Kang JH, Lee YY, Yu BY, Yang B-S, Cho K-H, Yoon DK, Roh YK (2005) Adiponectin induces growth arrest and apoptosis of MDA-MB-231 breast cancer cell. Arch Pharm Res 28:1263–1269PubMedCrossRefGoogle Scholar
  64. Kennedy AR, Pissios P, Otu H, Roberson R, Xue B, Asakura K, Furukawa N, Marino FE, Liu FF, Kahn BB, Libermann TA, Maratos-Flier E (2007) A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab 292:E1724–E1739PubMedCrossRefGoogle Scholar
  65. Kristin MN, Hilary AK, Carla VP, Andras L, Rebecca B-G, Marion RZ, Iris LR, Mark SC, Gordon BM, Gökhan SH, Yamada SD, Marcus EP, Katja G, Ernst L (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503CrossRefGoogle Scholar
  66. Kwan HY, Fu X, Liu B, Chao X, Chan CL, Cao H, Su T, Tse AKW, Fong WF, Yu Z-L (2014) Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid. J Biol Chem 289:30525–30537PubMedPubMedCentralCrossRefGoogle Scholar
  67. Laetitia D, Charlotte L, Virginie D, Alice D, Hermine B, Ali M, Odile D, Marie-Paule V, Florence C-C (2013) Reciprocal interactions between breast tumor and its adipose microenvironment based on a 3D adipose equivalent model. PLoS One 8:e66284CrossRefGoogle Scholar
  68. Laouirem S, Sannier A, Norkowski E, Cauchy F, Doblas S, Rautou PE, Albuquerque M, Garteiser P, Sognigbe L, Raffenne J, Van Beers BE, Soubrane O, Bedossa P, Cros J, Paradis V (2019) Endothelial fatty liver binding protein 4: a new targetable mediator in hepatocellular carcinoma related to metabolic syndrome. Oncogene 38:3033–3046PubMedCrossRefGoogle Scholar
  69. Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Den Broecke R, Limame R, Mestdagh P, Vandesompele J, Vanhove C, Maynard D, Lehuede C, Muller C, Valet P, Gespach CP, Bracke M, Cocquyt V, Denys H, De Wever O (2014) Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res 74:6806–6819PubMedCrossRefGoogle Scholar
  70. Lehuede C, Li X, Dauvillier S, Vaysse C, Franchet C, Clement E, Esteve D, Longue M, Chaltiel L, Le Gonidec S, Lazar I, Geneste A, Dumontet C, Valet P, Nieto L, Fallone F, Muller C (2019) Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: role of the major vault protein (MVP). Breast Cancer Res 21:7PubMedPubMedCentralCrossRefGoogle Scholar
  71. Liu Z, Xu J, He J, Liu H, Lin P, Wan X, Navone NM, Tong Q, Kwak LW, Orlowski RZ, Yang J (2015) Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget 6:34329–34341PubMedPubMedCentralGoogle Scholar
  72. Lopes-Coelho F, Andre S, Felix A, Serpa J (2018) Breast cancer metabolic cross-talk: fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol 462:93–106PubMedCrossRefGoogle Scholar
  73. Luo M, Brooks M, Wicha MS (2018) Asparagine and Glutamine: Co-conspirators Fueling Metastasis. Cell Metab 27:947–949PubMedCrossRefGoogle Scholar
  74. Man K, Ng KTP, Xu A, Cheng Q, Lo CM, Xiao JW, Sun BS, Lim ZXH, Cheung JS, Wu EX, Sun CKW, Poon RTP, Fan ST (2010) Suppression of liver tumor growth and metastasis by adiponectin in nude mice through inhibition of tumor angiogenesis and downregulation of rho kinase/IFN-inducible protein 10/matrix metalloproteinase 9 signaling. Clin Cancer Res 16:967–977PubMedCrossRefGoogle Scholar
  75. Manabe Y, Toda S, Miyazaki K, Sugihara H (2003) Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer–stromal cell interactions. J Pathol 201:221–228PubMedCrossRefGoogle Scholar
  76. Martuscello RT, Vedam-Mai V, Mccarthy DJ, Schmoll ME, Jundi MA, Louviere CD, Griffith BG, Skinner CL, Suslov O, Deleyrolle LP, Reynolds BA (2016) A supplemented high-fat low-carbohydrate diet for the treatment of glioblastoma. Clin Cancer Res 22:2482–2495PubMedCrossRefGoogle Scholar
  77. Mcnelis JC, Olefsky JM (2014) Macrophages, immunity, and metabolic disease. Immunity 41:36–48PubMedCrossRefGoogle Scholar
  78. Mick GJ, Wang X, Mccormick K (2002) White adipocyte vascular endothelial growth factor: regulation by insulin. Endocrinology 143:948–953PubMedCrossRefGoogle Scholar
  79. Mistry T, Digby JE, Desai KM, Randeva HS (2007) Obesity and prostate cancer: a role for adipokines. Eur Urol 52:46–53PubMedCrossRefGoogle Scholar
  80. Motrescu ER, Rio MC (2008) Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem 389:1037–1041PubMedCrossRefGoogle Scholar
  81. Muz B, De La Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, NZ) 3:83–92Google Scholar
  82. Nair S, Mason A, Eason J, Loss G, Perrillo RP (2002) Is obesity an independent risk factor for hepatocellular carcinoma in cirrhosis? Hepatology 36:150–155PubMedCrossRefGoogle Scholar
  83. Nam SY, Lee EJ, Kim KR, Cha BS, Song YD, Lim SK, Lee HC, Huh KB (1997) Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes Relat Metab Disord 21:355–359PubMedCrossRefGoogle Scholar
  84. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2:213–219PubMedPubMedCentralCrossRefGoogle Scholar
  85. Olsen CM, Nagle CM, Whiteman DC, Ness R, Pearce CL, Pike MC, Rossing MA, Terry KL, Wu AH, Australian Cancer Study, Australian Ovarian Cancer Study Group, Risch HA, Yu H, Doherty JA, Chang-Claude J, Hein R, Nickels S, Wang-Gohrke S, Goodman MT, Carney ME, Matsuno RK, Lurie G, Moysich K, Kjaer SK, Jensen A, Hogdall E, Goode EL, Fridley BL, Vierkant RA, Larson MC, Schildkraut J, Hoyo C, Moorman P, Weber RP, Cramer DW, Vitonis AF, Bandera EV, Olson SH, Rodriguez-Rodriguez L, King M, Brinton LA, Yang H, Garcia-Closas M, Lissowska J, Anton-Culver H, Ziogas A, Gayther SA, Ramus SJ, Menon U, Gentry-Maharaj A, Webb PM, Ovarian Cancer Association Consortium (2013) Obesity and risk of ovarian cancer subtypes: evidence from the Ovarian Cancer Association Consortium. Endocr Relat Cancer 20:251–262PubMedCrossRefGoogle Scholar
  86. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348PubMedCrossRefGoogle Scholar
  87. Park J, Scherer PE (2012) Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest 122:4243–4256PubMedPubMedCentralCrossRefGoogle Scholar
  88. Park J, Euhus DM, Scherer PE (2011) Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 32:550–570PubMedPubMedCentralCrossRefGoogle Scholar
  89. Park J, Morley TS, Scherer PE (2013) Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Mol Med 5:935–948PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001PubMedCrossRefGoogle Scholar
  91. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, Bissell MJ, Cox TR, Giaccia AJ, Erler JT, Hiratsuka S, Ghajar CM, Lyden D (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317PubMedCrossRefGoogle Scholar
  92. Petricoin III EF, Liotta L, Dadachova E, Pestell RG, Lisanti MP, Bonaldo P, Scherer PE (2005) Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Investig 115:1163–1176CrossRefGoogle Scholar
  93. Picon-Ruiz M, Pan C, Drews-Elger K, Jang K, Besser AH, Zhao D, Morata-Tarifa C, Kim M, Ince TA, Azzam DJ, Wander SA, Wang B, Ergonul B, Datar RH, Cote RJ, Howard GA, El-Ashry D, Torne-Poyatos P, Marchal JA, Slingerland JM (2016) Interactions between adipocytes and breast cancer cells stimulate cytokine production and drive Src/Sox2/miR-302b-mediated malignant progression. Cancer Res 76:491–504PubMedCrossRefGoogle Scholar
  94. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM (2017) Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin 67:378–397PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928PubMedCrossRefGoogle Scholar
  96. Pramanik R, Sheng X, Ichihara B, Heisterkamp N, Mittelman SD (2012) Adipose tissue attracts and protects acute lymphoblastic leukemia cells from chemotherapy. Leuk Res 37:503–509CrossRefGoogle Scholar
  97. Qiao Z, Sarah MD, Jinling Z, Erinn D-K, Jeremy R, Stephen DH, Nathan AB, Ofer R (2011) Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival. Endocr Relat Cancer 18:491–503CrossRefGoogle Scholar
  98. Raphael Johannes M, Sepideh A-G, René Gunther F, Johannes Adalbert M, Roland L, Daniel N, Wolfgang S, Barbara K (2015) Inhibition of neuroblastoma tumor growth by ketogenic diet and/or calorie restriction in a CD1-Nu mouse model. PLoS One 10:e0129802CrossRefGoogle Scholar
  99. Rausch LK, Netzer NC, Hoegel J, Pramsohler S (2017) The linkage between breast cancer, hypoxia, and adipose tissue. Front Oncol 7:211PubMedPubMedCentralCrossRefGoogle Scholar
  100. Razmkhah M, Jaberipour M, Erfani N, Habibagahi M, Talei A-R, Ghaderi A (2011) Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-β1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell Immunol 266:116–122PubMedCrossRefGoogle Scholar
  101. Rei S, Noriyuki O, Shinji K, Kaori S, Tohru F, Kenneth W (2004) Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of AMP-activated protein kinase signaling. J Biol Chem 279:28670–28674CrossRefGoogle Scholar
  102. Ribeiro AM, Andrade S, Pinho F, Monteiro JD, Costa M, Lopes C, Aguas AP, Monteiro MP (2010) Prostate cancer cell proliferation and angiogenesis in different obese mice models. Int J Exp Pathol 91:374PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ribeiro RJT, Monteiro CPD, Cunha VFPM, Azevedo ASM, Oliveira MJ, Monteiro R, Fraga AM, Principe P, Lobato C, Lobo F, Morais A, Silva V, Sanches-Magalhaes J, Oliveira J, Guimaraes JT, Lopes CMS, Medeiros RM (2012) Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cell Physiol Biochem 29:233–240PubMedCrossRefGoogle Scholar
  104. Rouyer N, Wolf C, Chenard MP, Rio MC, Chambon P, Bellocq JP, Basset P (1994) Stromelysin-3 gene expression in human cancer: an overview. Invasion Metastasis 14:269–275PubMedGoogle Scholar
  105. Shanmugalingam T, Bosco C, Ridley AJ, Van Hemelrijck M (2016) Is there a role for IGF-1 in the development of second primary cancers? Cancer Med 5:3353–3367PubMedPubMedCentralCrossRefGoogle Scholar
  106. Shimizu I, Yoshida Y, Suda M, Minamino T (2014) DNA damage response and metabolic disease. Cell Metab 20:967–977PubMedCrossRefGoogle Scholar
  107. Suga H, Matsumoto D, Inoue K, Shigeura T, Eto H, Aoi N, Kato H, Abe H, Yoshimura K (2008) Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast Reconstr Surg 122:103–114PubMedCrossRefGoogle Scholar
  108. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121:2094–2101PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tian Z, Sun R, Wei H, Gao B (1959) Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun 298:297–302CrossRefGoogle Scholar
  110. Tokuda Y, Satoh Y, Fujiyama C, Toda S, Sugihara H, Masaki Z (2003) Prostate cancer cell growth is modulated by adipocyte-cancer cell interaction. BJU Int 91:716–720PubMedCrossRefGoogle Scholar
  111. Uddin S, Bu R, Ahmed M, Abubaker J, Al-Dayel F, Bavi P, Al-Kuraya KS (2009) Overexpression of leptin receptor predicts an unfavorable outcome in middle eastern ovarian cancer. Mol Cancer 8:74PubMedPubMedCentralCrossRefGoogle Scholar
  112. Vidali S, Aminzadeh S, Lambert B, Rutherford T, Sperl W, Kofler B, Feichtinger RG (1983) Mitochondria: the ketogenic diet—a metabolism-based therapy. Cell Biochem Funct 63:55–59Google Scholar
  113. Wang Y-Y, Lehuede C, Laurent V, Dirat B, Dauvillier S, Bochet L, Le Gonidec S, Escourrou G, Valet P, Muller C (1975) Adipose tissue and breast epithelial cells: a dangerous dynamic duo in breast cancer. Cancer Lett 324:142–151CrossRefGoogle Scholar
  114. Wang Y, Lam JB, Lam KSL, Liu J, Lam MC, Hoo RLC, Wu D, Cooper GJS, Xu A (2006) Adiponectin modulates the glycogen synthase kinase-3β/β-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res 66:11462–11470PubMedCrossRefGoogle Scholar
  115. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C (2017a) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761–773PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wang YY, Attane C, Milhas D, Dirat B, Dauvillier S, Guerard A, Gilhodes J, Lazar I, Alet N, Laurent V, Le Gonidec S, Biard D, Herve C, Bost F, Ren GS, Bono F, Escourrou G, Prentki M, Nieto L, Valet P, Muller C (2017b) Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2:e87489PubMedPubMedCentralGoogle Scholar
  117. Wang K, Yu XH, Tang YJ, Tang YL, Liang XH (2019) Obesity: an emerging driver of head and neck cancer. Life Sci 233:116687PubMedCrossRefGoogle Scholar
  118. Warburg O (1956) On the origin of cancer cells. Science (NY) 123:309–314CrossRefGoogle Scholar
  119. Wei L, Li K, Pang X, Guo B, Su M, Huang Y, Wang N, Ji F, Zhong C, Yang J, Zhang Z, Jiang Y, Liu Y, Chen T (2016) Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2. J Exp Clin Cancer Res 35:166–110PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wright C, Simone N (2016) Obesity and tumor growth: inflammation, immunity, and the role of a ketogenic diet. Curr Opin Clin Nutr Metab Care 19:294–299PubMedCrossRefGoogle Scholar
  121. Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156PubMedCrossRefGoogle Scholar
  122. Yao S, Fan LY, Lam EW (2018) The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol 50:77–89PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yeh W-L, Lu D-Y, Lee M-J, Fu W-M (2009) Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia 57:454–464PubMedCrossRefGoogle Scholar
  124. Young SG, Zechner R (2013) Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev 27:459–484PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhang Z, Scherer PE (2018) Adipose tissue: the dysfunctional adipocyte—a cancer cell’s best friend. Nat Rev Endocrinol 14:132–134PubMedCrossRefGoogle Scholar
  126. Zhang F, Chen Y, Heiman M, Dimarchi R (2005) Leptin: structure, function and biology. Vitam Horm 71:345–372PubMedCrossRefGoogle Scholar
  127. Zhang M, Di Martino JS, Bowman RL, Campbell NR, Baksh SC, Simon-Vermot T, Kim IS, Haldeman P, Mondal C, Yong-Gonzales V, Abu-Akeel M, Merghoub T, Jones DR, Zhu XG, Arora A, Ariyan CE, Birsoy K, Wolchok JD, Panageas KS, Hollmann T, Bravo-Cordero JJ, White RM (2018) Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov 8:1006–1025PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, Fan Q, Li J, Ning T, Tian F, Li H, Sun W, Ying G, Ba Y (2019) Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene 38:2844–2859PubMedCrossRefGoogle Scholar
  129. Zimmerlin L, Donnenberg AD, Rubin JP, Basse P, Landreneau RJ, Donnenberg VS (2011) Regenerative therapy and cancer: in vitro and in vivo studies of the interaction between adipose-derived stem cells and breast cancer cells from clinical isolates. Tissue Eng A 17:93–106CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Surgery and CancerImperial College London, Hammersmith Hospital CampusLondonUK

Personalised recommendations