Advertisement

Lactate and Lactate Transporters as Key Players in the Maintenance of the Warburg Effect

  • Andreia Pereira-Nunes
  • Julieta Afonso
  • Sara Granja
  • Fátima BaltazarEmail author
Chapter
  • 273 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1219)

Abstract

Reprogramming of energy metabolism is a key hallmark of cancer. Most cancer cells display a glycolytic phenotype, with increased glucose consumption and glycolysis rates, and production of lactate as the end product, independently of oxygen concentrations. This phenomenon, known as “Warburg Effect”, provides several survival advantages to cancer cells and modulates the metabolism and function of neighbour cells in the tumour microenvironment. However, due to the presence of metabolic heterogeneity within a tumour, cancer cells can also display an oxidative phenotype, and corruptible cells from the microenvironment become glycolytic, cooperating with oxidative cancer cells to boost tumour growth. This phenomenon is known as “Reverse Warburg Effect”. In either way, lactate is a key mediator in the metabolic crosstalk between cancer cells and the microenvironment, and lactate transporters are expressed differentially by existing cell populations, to support this crosstalk.

In this review, we will focus on lactate and on lactate transporters in distinct cells of the tumour microenvironment, aiming at a better understanding of their role in the acquisition and maintenance of the direct/reverse “Warburg effect” phenotype, which modulate cancer progression.

Keywords

Glycolysis Lactate Warburg effect Reverse Warburg effect Monocarboxylate transporters Lactate shuttles Cancer-associated fibroblasts Endothelial cells Immune cells 

Notes

Acknowledgments

This article has been developed under the scope of the project NORTE-01-0145-FEDER- 000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020) under the Portugal Partnership Agreement, through the European Regional Development Fund (FEDER), and through the Competitiveness Factors Operational Programme (COMPETE) and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038. AP, JA and SG received fellowships from FCT, ref. SFRH/BD/148476/2019, SFRH/BPD/116784/2016 and SFRH/BPD/117858/2016, respectively.

Competing Interests

The authors declare no conflict of interest.

References

  1. Afonso J, Santos LL, Morais A, Amaro T, Longatto-Filho A, Baltazar F (2016) Metabolic coupling in urothelial bladder cancer compartments and its correlation to tumor aggressiveness. Cell Cycle 15(3):368–380.  https://doi.org/10.1080/15384101.2015.1121329 CrossRefPubMedGoogle Scholar
  2. Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R (2017) EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging 44(Suppl 1):17–31.  https://doi.org/10.1007/s00259-017-3740-2 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allen E, Mieville P, Warren CM, Saghafinia S, Li L, Peng MW et al (2016) Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling. Cell Rep 15(6):1144–1160.  https://doi.org/10.1016/j.celrep.2016.04.029 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andersen AP, Samsoe-Petersen J, Oernbo EK, Boedtkjer E, Moreira JMA, Kveiborg M et al (2018) The net acid extruders NHE1, NBCn1 and MCT4 promote mammary tumor growth through distinct but overlapping mechanisms. Int J Cancer 142(12):2529–2542.  https://doi.org/10.1002/ijc.31276 CrossRefPubMedGoogle Scholar
  5. Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernandez-Perez D, Isella C et al (2018) Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab 28(6):848–865.e6.  https://doi.org/10.1016/j.cmet.2018.08.006 CrossRefPubMedGoogle Scholar
  6. Asterholm IW, Mundy DI, Weng J, Anderson RG, Scherer PE (2012) Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab 15(2):171–185.  https://doi.org/10.1016/j.cmet.2012.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baba M, Inoue M, Itoh K, Nishizawa Y (2008) Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism. Biochem Biophys Res Commun 374(1):111–116.  https://doi.org/10.1016/j.bbrc.2008.06.122 CrossRefPubMedGoogle Scholar
  8. Baumann F, Leukel P, Doerfelt A, Beier CP, Dettmer K, Oefner PJ et al (2009) Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro-Oncology 11(4):368–380.  https://doi.org/10.1215/15228517-2008-106 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Konigsrainer A, Hussain MZ et al (2006) Lactate stimulates endothelial cell migration. Wound Repair Regen 14(3):321–324.  https://doi.org/10.1111/j.1743-6109.2006.00127.x CrossRefPubMedGoogle Scholar
  10. Beloueche-Babari M, Wantuch S, Casals Galobart T, Koniordou M, Parkes HG, Arunan V et al (2017) MCT1 inhibitor AZD3965 increases mitochondrial metabolism, facilitating combination therapy and noninvasive magnetic resonance spectroscopy. Cancer Res 77(21):5913–5924.  https://doi.org/10.1158/0008-5472.CAN-16-2686 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Birsoy K, Wang T, Possemato R, Yilmaz OH, Koch CE, Chen WW et al (2013) MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet 45(1):104–108.  https://doi.org/10.1038/ng.2471 CrossRefPubMedGoogle Scholar
  12. Bisetto S, Whitaker-Menezes D, Wilski NA, Tuluc M, Curry J, Zhan T et al (2018) Monocarboxylate transporter 4 (MCT4) knockout mice have attenuated 4NQO induced carcinogenesis; a role for MCT4 in driving oral squamous cell cancer. Front Oncol 8:324.  https://doi.org/10.3389/fonc.2018.00324 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Biswas SK (2015) Metabolic reprogramming of immune cells in cancer progression. Immunity 43(3):435–449.  https://doi.org/10.1016/j.immuni.2015.09.001 CrossRefPubMedGoogle Scholar
  14. Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A et al (2010) The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9(10):1960–1971.  https://doi.org/10.4161/cc.9.10.11601 CrossRefPubMedGoogle Scholar
  15. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A et al (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24(5):657–671.  https://doi.org/10.1016/j.cmet.2016.08.011 CrossRefPubMedGoogle Scholar
  16. Broer S (2005) Lactate transportation is required for lymphocyte activation. Nat Chem Biol 1(7):356–357. http://www.ncbi.nlm.nih.gov/pubmed/16370370 CrossRefGoogle Scholar
  17. Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A et al (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72(11):2746–2756.  https://doi.org/10.1158/0008-5472.CAN-11-1272 CrossRefPubMedGoogle Scholar
  18. Cammann C, Rath A, Reichl U, Lingel H, Brunner-Weinzierl M, Simeoni L et al (2016) Early changes in the metabolic profile of activated CD8(+) T cells. BMC Cell Biol 17(1):28.  https://doi.org/10.1186/s12860-016-0104-x. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Carmona-Fontaine C, Bucci V, Akkari L, Deforet M, Joyce JA, Xavier JB (2013) Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc Natl Acad Sci U S A 110(48):19402–19407.  https://doi.org/10.1073/pnas.1311939110 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241.  https://doi.org/10.1016/j.cell.2015.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen X, Song E (2018) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18(2):99–115.  https://doi.org/10.1038/s41573-018-0004-1 CrossRefGoogle Scholar
  22. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y et al (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45.  https://doi.org/10.1186/s12916-015-0278-7 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cheng Z, Ristow M (2013) Mitochondria and metabolic homeostasis. Antioxid Redox Signal 19(3):240–242.  https://doi.org/10.1089/ars.2013.5255 CrossRefPubMedGoogle Scholar
  24. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563.  https://doi.org/10.1038/nature13490 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ et al (2011) Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 13(7):620–632. https://www.ncbi.nlm.nih.gov/pubmed/21750656 CrossRefGoogle Scholar
  26. Constant JS, Feng JJ, Zabel DD, Yuan H, Suh DY, Scheuenstuhl H et al (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8(5):353–360CrossRefGoogle Scholar
  27. Corbet C, Ragelle H, Pourcelle V, Vanvarenberg K, Marchand-Brynaert J, Preat V et al (2016) Delivery of siRNA targeting tumor metabolism using non-covalent PEGylated chitosan nanoparticles: identification of an optimal combination of ligand structure, linker and grafting method. J Control Release 223:53–63.  https://doi.org/10.1016/j.jconrel.2015.12.020 CrossRefPubMedGoogle Scholar
  28. Corbet C, Bastien E, Draoui N, Doix B, Mignion L, Jordan BF et al (2018) Interruption of lactate uptake by inhibiting mitochondrial pyruvate transport unravels direct antitumor and radiosensitizing effects. Nat Commun 9(1):1208.  https://doi.org/10.1038/s41467-018-03525-0. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Cruz-Bermudez A, Laza-Briviesca R, Vicente-Blanco RJ, Garcia-Grande A, Coronado MJ, Laine-Menendez S et al (2019) Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-beta signaling. Free Radic Biol Med 130:163–173.  https://doi.org/10.1016/j.freeradbiomed.2018.10.450 CrossRefPubMedGoogle Scholar
  30. Curry JM, Tuluc M, Whitaker-Menezes D, Ames JA, Anantharaman A, Butera A et al (2013) Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer. Cell Cycle 12(9):1371–1384.  https://doi.org/10.4161/cc.24092 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dai G, Yao X, Zhang Y, Gu J, Geng Y, Xue F et al (2018) Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway. Bull Cancer 105(4):336–349.  https://doi.org/10.1016/j.bulcan.2017.12.009 CrossRefPubMedGoogle Scholar
  32. De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O, Sonveaux P (2012) Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS One 7(10):e46571.  https://doi.org/10.1371/journal.pone.0046571 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des 18(10):1319–1330. http://www.ncbi.nlm.nih.gov/pubmed/22360558 CrossRefGoogle Scholar
  34. Diehl K, Dinges LA, Helm O, Ammar N, Plundrich D, Arlt A et al (2018) Nuclear factor E2-related factor-2 has a differential impact on MCT1 and MCT4 lactate carrier expression in colonic epithelial cells: a condition favoring metabolic symbiosis between colorectal cancer and stromal cells. Oncogene 37(1):39–51.  https://doi.org/10.1038/onc.2017.299 CrossRefPubMedGoogle Scholar
  35. Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C et al (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 184(3):1200–1209.  https://doi.org/10.4049/jimmunol.0902584 CrossRefPubMedGoogle Scholar
  36. Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Invest 123(9):3685–3692.  https://doi.org/10.1172/JCI69741 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Eelen G, de Zeeuw P, Simons M, Carmeliet P (2015) Endothelial cell metabolism in normal and diseased vasculature. Circ Res 116(7):1231–1244.  https://doi.org/10.1161/CIRCRESAHA.116.302855 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P (2018) Endothelial cell metabolism. Physiol Rev 98(1):3–58.  https://doi.org/10.1152/physrev.00001.2017 CrossRefPubMedGoogle Scholar
  39. Enerson BE, Drewes LR (2003) Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J Pharm Sci 92(8):1531–1544.  https://doi.org/10.1002/jps.10389 CrossRefPubMedGoogle Scholar
  40. Errea A, Cayet D, Marchetti P, Tang C, Kluza J, Offermanns S et al (2016) Lactate inhibits the pro-inflammatory response and metabolic reprogramming in murine macrophages in a GPR81-independent manner. PLoS One 11(11):e0163694.  https://doi.org/10.1371/journal.pone.0163694 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG et al (2017) Lactate metabolism in human lung tumors. Cell 171(2):358–371.e9.  https://doi.org/10.1016/j.cell.2017.09.019 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819.  https://doi.org/10.1182/blood-2006-07-035972 CrossRefPubMedGoogle Scholar
  43. Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016–1036. http://www.ncbi.nlm.nih.gov/pubmed/28560055 PubMedPubMedCentralGoogle Scholar
  44. Gan L, Xiu R, Ren P, Yue M, Su H, Guo G et al (2016) Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of transporters. Oncogene 35(23):3037–3048.  https://doi.org/10.1038/onc.2015.360 CrossRefPubMedGoogle Scholar
  45. Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56(24):5745–5753. http://www.ncbi.nlm.nih.gov/pubmed/8971186 PubMedGoogle Scholar
  46. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66(10):5216–5223.  https://doi.org/10.1158/0008-5472.CAN-05-4193 CrossRefPubMedGoogle Scholar
  47. Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Phys 273(1 Pt 1):E207–E213.  https://doi.org/10.1152/ajpendo.1997.273.1.E207. CrossRefGoogle Scholar
  48. Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39(2):453–463.  https://doi.org/10.3892/ijo.2011.1055. CrossRefPubMedGoogle Scholar
  49. Gooptu M, Whitaker-Menezes D, Sprandio J, Domingo-Vidal M, Lin Z, Uppal G et al (2017) Mitochondrial and glycolytic metabolic compartmentalization in diffuse large B-cell lymphoma. Semin Oncol 44(3):204–217.  https://doi.org/10.1053/j.seminoncol.2017.10.002 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5):2013–2021.  https://doi.org/10.1182/blood-2005-05-1795 CrossRefPubMedGoogle Scholar
  51. Granja S, Tavares-Valente D, Queiros O, Baltazar F (2017) Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Semin Cancer Biol 43:17–34.  https://doi.org/10.1016/j.semcancer.2016.12.003 CrossRefPubMedGoogle Scholar
  52. Guan X, Bryniarski MA, Morris ME (2018) In vitro and in vivo efficacy of the monocarboxylate transporter 1 inhibitor AR-C155858 in the murine 4T1 breast cancer tumor model. AAPS J 21(1):3.  https://doi.org/10.1208/s12248-018-0261-2. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezene P et al (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 110(10):3919–3924.  https://doi.org/10.1073/pnas.1219555110 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Guppy M, Leedman P, Zu X, Russell V (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364(Pt 1):309–315. http://www.ncbi.nlm.nih.gov/pubmed/11988105 CrossRefGoogle Scholar
  55. Gurrapu S, Jonnalagadda SK, Alam MA, Ronayne CT, Nelson GL, Solano LN et al (2016) Coumarin carboxylic acids as monocarboxylate transporter 1 inhibitors: in vitro and in vivo studies as potential anticancer agents. Bioorg Med Chem Lett 26(14):3282–3286.  https://doi.org/10.1016/j.bmcl.2016.05.054 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D’Acquisto F et al (2015) Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol 13(7):e1002202.  https://doi.org/10.1371/journal.pbio.1002202 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Halestrap AP (2013) The SLC16 gene family – structure, role and regulation in health and disease. Mol Asp Med 34(2–3):337–349.  https://doi.org/10.1016/j.mam.2012.05.003 CrossRefGoogle Scholar
  58. Halestrap AP, Wilson MC (2012) The monocarboxylate transporter family--role and regulation. IUBMB Life 64(2):109–119.  https://doi.org/10.1002/iub.572 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Halford SER, Jones P, Wedge S, Hirschberg S, Katugampola S, Veal G et al (2017) A first-in-human first-in-class (FIC) trial of the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 in patients with advanced solid tumours. J Clin Oncol 35(15_suppl):2516–2516.  https://doi.org/10.1200/JCO.2017.35.15_suppl.2516 CrossRefGoogle Scholar
  60. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefGoogle Scholar
  61. Hao J, Graham P, Chang L, Ni J, Wasinger V, Beretov J et al (2016) Proteomic identification of the lactate dehydrogenase A in a radioresistant prostate cancer xenograft mouse model for improving radiotherapy. Oncotarget 7(45):74269–74285.  https://doi.org/10.18632/oncotarget.12368 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hargadon KM (2017) Strategies to improve the efficacy of dendritic cell-based immunotherapy for melanoma. Front Immunol 8:1594.  https://doi.org/10.3389/fimmu.2017.01594 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925. 71/22/6921 [pii].  https://doi.org/10.1158/0008-5472.CAN-11-1457 CrossRefGoogle Scholar
  64. Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP, Hussain MZ et al (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9(8):1115–1124.  https://doi.org/10.1089/ars.2007.1674 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Husain Z, Huang Y, Seth P, Sukhatme VP (2013a) Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol 191(3):1486–1495.  https://doi.org/10.4049/jimmunol.1202702 CrossRefPubMedGoogle Scholar
  66. Husain Z, Seth P, Sukhatme VP (2013b) Tumor-derived lactate and myeloid-derived suppressor cells: linking metabolism to cancer immunology. Oncoimmunology 2(11):e26383.  https://doi.org/10.4161/onci.26383 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Im HJ, Bradshaw T, Solaiyappan M, Cho SY (2018) Current methods to define metabolic tumor volume in positron emission tomography: which one is better? Nucl Med Mol Imaging 52(1):5–15.  https://doi.org/10.1007/s13139-017-0493-6 CrossRefPubMedGoogle Scholar
  68. Kasinrerk W, Tokrasinwit N, Phunpae P (1999) CD147 monoclonal antibodies induce homotypic cell aggregation of monocytic cell line U937 via LFA-1/ICAM-1 pathway. Immunology 96(2):184–192. https://www.ncbi.nlm.nih.gov/pubmed/10233694 CrossRefGoogle Scholar
  69. Kato Y, Ozawa S, Tsukuda M, Kubota E, Miyazaki K, St-Pierre Y et al (2007) Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma. FEBS J 274(12):3171–3183.  https://doi.org/10.1111/j.1742-4658.2007.05848.x CrossRefPubMedGoogle Scholar
  70. Kim HK, Lee I, Bang H, Kim HC, Lee WY, Yun SH et al (2018) MCT4 expression is a potential therapeutic target in colorectal cancer with peritoneal carcinomatosis. Mol Cancer Ther 17(4):838–848.  https://doi.org/10.1158/1535-7163.MCT-17-0535 CrossRefPubMedGoogle Scholar
  71. Kishimoto A, Takahashi-Iwanaga H, Watanabe MM, Iwanaga T (2016) Differential expression of endothelial nutrient transporters (MCT1 and GLUT1) in the developing eyes of mice. Exp Eye Res 153:170–177.  https://doi.org/10.1016/j.exer.2016.10.019 CrossRefPubMedGoogle Scholar
  72. Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66(2):632–637.  https://doi.org/10.1158/0008-5472.CAN-05-3260 CrossRefPubMedGoogle Scholar
  73. Koukourakis MI, Giatromanolaki A, Bougioukas G, Sivridis E (2007) Lung cancer: a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma. Cancer Biol Ther 6(9):1476–1479. http://www.ncbi.nlm.nih.gov/pubmed/17881895 CrossRefGoogle Scholar
  74. Koukourakis MI, Kalamida D, Mitrakas AG, Liousia M, Pouliliou S, Sivridis E et al (2017) Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts. Lab Investig 97(11):1321–1331.  https://doi.org/10.1038/labinvest.2017.79 CrossRefPubMedGoogle Scholar
  75. Kumar A, Kant S, Singh SM (2013) Targeting monocarboxylate transporter by alpha-cyano-4-hydroxycinnamate modulates apoptosis and cisplatin resistance of Colo205 cells: implication of altered cell survival regulation. Apoptosis 18(12):1574–1585.  https://doi.org/10.1007/s10495-013-0894-7 CrossRefPubMedGoogle Scholar
  76. Kumar D, New J, Vishwakarma V, Joshi R, Enders J, Lin F et al (2018) Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res 78(14):3769–3782.  https://doi.org/10.1158/0008-5472.CAN-17-1076 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N et al (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94(4):578–585.  https://doi.org/10.1038/sj.bjc.6602962 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Le Floch R, Chiche J, Marchiq I, Naiken T, Ilc K, Murray CM et al (2011) CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc Natl Acad Sci U S A 108(40):16663–16668.  https://doi.org/10.1073/pnas.1106123108 CrossRefPubMedPubMedCentralGoogle Scholar
  79. LeBleu VS, Kalluri R (2018) A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 11(4).  https://doi.org/10.1242/dmm.029447 CrossRefGoogle Scholar
  80. Lee DC, Sohn HA, Park ZY, Oh S, Kang YK, Lee KM et al (2015) A lactate-induced response to hypoxia. Cell 161(3):595–609.  https://doi.org/10.1016/j.cell.2015.03.011 CrossRefPubMedGoogle Scholar
  81. Lee JY, Lee I, Chang WJ, Ahn SM, Lim SH, Kim HS et al (2016) MCT4 as a potential therapeutic target for metastatic gastric cancer with peritoneal carcinomatosis. Oncotarget 7(28):43492–43503.  https://doi.org/10.18632/oncotarget.9523 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Lemons JM, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, Raitman I et al (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8(10):e1000514.  https://doi.org/10.1371/journal.pbio.1000514 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Li R, Pan Y, He B, Xu Y, Gao T, Song G et al (2013) Downregulation of CD147 expression by RNA interference inhibits HT29 cell proliferation, invasion and tumorigenicity in vitro and in vivo. Int J Oncol 43(6):1885–1894.  https://doi.org/10.3892/ijo.2013.2108 CrossRefPubMedGoogle Scholar
  84. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218.  https://doi.org/10.1016/j.tibs.2015.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lin S, Sun L, Lyu X, Ai X, Du D, Su N et al (2017) Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: a positive metabolic feedback loop. Oncotarget 8(66):110426–110443.  https://doi.org/10.18632/oncotarget.22786 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Liu Y, Ji X, Tong WWL, Askhatova D, Yang T, Cheng H et al (2018) Engineering multifunctional RNAi nanomedicine to concurrently target cancer hallmarks for combinatorial therapy. Angew Chem Int Ed Engl 57(6):1510–1513.  https://doi.org/10.1002/anie.201710144 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277(26):23111–23115.  https://doi.org/10.1074/jbc.M202487200 CrossRefPubMedGoogle Scholar
  88. Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem 280(51):41928–41939.  https://doi.org/10.1074/jbc.M508718200 CrossRefPubMedGoogle Scholar
  89. Luo M, Luo Y, Mao N, Huang G, Teng C, Wang H et al (2018) Cancer-associated fibroblasts accelerate malignant progression of non-small cell lung cancer via connexin 43-formed unidirectional gap junctional intercellular communication. Cell Physiol Biochem 51(1):315–336.  https://doi.org/10.1159/000495232. CrossRefPubMedGoogle Scholar
  90. Mac M, Nalecz KA (2003) Expression of monocarboxylic acid transporters (MCT) in brain cells. Implication for branched chain alpha-ketoacids transport in neurons. Neurochem Int 43(4–5):305–309. http://www.ncbi.nlm.nih.gov/pubmed/12742073 CrossRefGoogle Scholar
  91. Machler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A et al (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 23(1):94–102.  https://doi.org/10.1016/j.cmet.2015.10.010 CrossRefPubMedGoogle Scholar
  92. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D et al (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20(1):61–72.  https://doi.org/10.1016/j.cmet.2014.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  93. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283.  https://doi.org/10.1146/annurev-immunol-032712-095956 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B et al (2010a) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle 9(12):2423–2433.  https://doi.org/10.4161/cc.9.12.12048 CrossRefPubMedGoogle Scholar
  95. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J et al (2010b) Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9(17):3515–3533.  https://doi.org/10.4161/cc.9.17.12928. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15(4):300–308.  https://doi.org/10.1016/j.semcancer.2005.04.009 CrossRefPubMedGoogle Scholar
  97. McAnulty RJ (2007) Fibroblasts and myofibroblasts: their source, function and role in disease. Int J Biochem Cell Biol 39(4):666–671.  https://doi.org/10.1016/j.biocel.2006.11.005 CrossRefPubMedGoogle Scholar
  98. McKay ND, Robinson B, Brodie R, Rooke-Allen N (1983) Glucose transport and metabolism in cultured human skin fibroblasts. Biochim Biophys Acta 762(2):198–204. http://www.ncbi.nlm.nih.gov/pubmed/6830872 CrossRefGoogle Scholar
  99. Miranda-Gonçalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C et al (2013) Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-Oncology 15(2):172–188.  https://doi.org/10.1093/neuonc/nos298 CrossRefPubMedGoogle Scholar
  100. Miranda-Gonçalves V, Bezerra F, Costa-Almeida R, Freitas-Cunha M, Soares R, Martinho O et al (2017) Monocarboxylate transporter 1 is a key player in glioma-endothelial cell crosstalk. Mol Carcinog 56(12):2630–2642.  https://doi.org/10.1002/mc.22707 CrossRefPubMedGoogle Scholar
  101. Morais-Santos F, Miranda-Goncalves V, Pinheiro S, Vieira AF, Paredes J, Schmitt FC et al (2014) Differential sensitivities to lactate transport inhibitors of breast cancer cell lines. Endocr Relat Cancer 21(1):27–38.  https://doi.org/10.1530/ERC-13-0132. CrossRefPubMedGoogle Scholar
  102. Morais-Santos F, Granja S, Miranda-Goncalves V, Moreira AH, Queiros S, Vilaca JL et al (2015) Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget 6(22):19177–19189.  https://doi.org/10.18632/oncotarget.3910 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Murray CM, Hutchinson R, Bantick JR, Belfield GP, Benjamin AD, Brazma D et al (2005) Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol 1(7):371–376. http://www.ncbi.nlm.nih.gov/pubmed/16370372 CrossRefGoogle Scholar
  104. Nasi A, Fekete T, Krishnamurthy A, Snowden S, Rajnavolgyi E, Catrina AI et al (2013) Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol 191(6):3090–3099.  https://doi.org/10.4049/jimmunol.1300772 CrossRefPubMedGoogle Scholar
  105. Newsholme EA, Crabtree B, Ardawi MS (1985) The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5(5):393–400CrossRefGoogle Scholar
  106. Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP (2010) AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10. Biochem J 425(3):523–530.  https://doi.org/10.1042/BJ20091515 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Park JM, Josan S, Mayer D, Hurd RE, Chung Y, Bendahan D et al (2015) Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle. J Exp Biol 218(Pt 20):3308–3318.  https://doi.org/10.1242/jeb.123141 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Parks SK, Chiche J, Pouyssegur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13(9):611–623.  https://doi.org/10.1038/nrc3579 CrossRefPubMedGoogle Scholar
  109. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001.  https://doi.org/10.4161/cc.8.23.10238 CrossRefGoogle Scholar
  110. Payen VL, Hsu MY, Radecke KS, Wyart E, Vazeille T, Bouzin C et al (2017) Monocarboxylate transporter MCT1 promotes tumor metastasis independently of its activity as a lactate transporter. Cancer Res 77(20):5591–5601.  https://doi.org/10.1158/0008-5472.CAN-17-0764 CrossRefPubMedGoogle Scholar
  111. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643.  https://doi.org/10.1016/j.immuni.2013.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Pearce EL, Poffenberger MC, Chang CH, Jones RG (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science 342(6155):1242454.  https://doi.org/10.1126/science.1242454 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Perez-Escuredo J, Van Hee VF, Sboarina M, Falces J, Payen VL, Pellerin L et al (2016) Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta 1863(10):2481–2497.  https://doi.org/10.1016/j.bbamcr.2016.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Pertega-Gomes N, Vizcaino JR, Attig J, Jurmeister S, Lopes C, Baltazar F (2014) A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer 14:352.  https://doi.org/10.1186/1471-2407-14-352 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Pinheiro C, Longatto-Filho A, Azevedo-Silva J, Casal M, Schmitt FC, Baltazar F (2012) Role of monocarboxylate transporters in human cancers: state of the art. J Bioenerg Biomembr 44(1):127–139.  https://doi.org/10.1007/s10863-012-9428-1 CrossRefPubMedGoogle Scholar
  116. Pinheiro C, Garcia EA, Morais-Santos F, Moreira MA, Almeida FM, Jube LF et al (2015a) Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas. BMC Cancer 15:835.  https://doi.org/10.1186/s12885-015-1842-4 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Pinheiro C, Granja S, Longatto-Filho A, Faria AM, Fragoso MC, Lovisolo SM et al (2015b) Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors. Oncotarget 6(42):44403–44421.  https://doi.org/10.18632/oncotarget.5623 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Pinheiro C, Morais-Santos F, Granja S, Miranda-Goncalves V, Afonso J, Amorim R et al (2015c) Targeting metabolic reprogramming as an anti-cancer strategy: aiming at monocarboxylate transporters. In: Atta-ur-Rahman, Choudhary MI (eds) Frontiers in anti-cancer drug discovery. Bentham Science Publishers, Sharjah, pp 3–65.  https://doi.org/10.2174/9781681081496115060003 CrossRefGoogle Scholar
  119. Polanski R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P et al (2014) Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res 20(4):926–937.  https://doi.org/10.1158/1078-0432.CCR-13-2270 CrossRefPubMedGoogle Scholar
  120. Porporato PE, Payen VL, De Saedeleer CJ, Preat V, Thissen JP, Feron O et al (2012) Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 15(4):581–592.  https://doi.org/10.1007/s10456-012-9282-0 CrossRefPubMedGoogle Scholar
  121. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887.  https://doi.org/10.1016/j.cell.2011.08.039 CrossRefPubMedGoogle Scholar
  122. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443.  https://doi.org/10.1038/nature04871 CrossRefPubMedGoogle Scholar
  123. Puig-Kroger A, Pello OM, Muniz-Pello O, Selgas R, Criado G, Bajo MA et al (2003) Peritoneal dialysis solutions inhibit the differentiation and maturation of human monocyte-derived dendritic cells: effect of lactate and glucose-degradation products. J Leukoc Biol 73(4):482–492.  https://doi.org/10.1189/jlb.0902451 CrossRefPubMedGoogle Scholar
  124. Racker E (1974) History of the Pasteur effect and its pathobiology. Mol Cell Biochem 5(1–2):17–23. http://www.ncbi.nlm.nih.gov/pubmed/4279327 CrossRefGoogle Scholar
  125. Rai A, Greening DW, Chen M, Xu R, Ji H, Simpson RJ (2018) Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome. Proteomics:e1800148.  https://doi.org/10.1002/pmic.201800148 CrossRefGoogle Scholar
  126. Rasanen K, Vaheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316(17):2713–2722.  https://doi.org/10.1016/j.yexcr.2010.04.032 CrossRefPubMedGoogle Scholar
  127. Richter S, D’Antongiovanni V, Martinelli S, Bechmann N, Riverso M, Poitz DM et al (2018) Primary fibroblast co-culture stimulates growth and metabolism in Sdhb-impaired mouse pheochromocytoma MTT cells. Cell Tissue Res 374(3):473–485.  https://doi.org/10.1007/s00441-018-2907-x CrossRefPubMedGoogle Scholar
  128. Riemann A, Schneider B, Ihling A, Nowak M, Sauvant C, Thews O et al (2011) Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS One 6(7):e22445.  https://doi.org/10.1371/journal.pone.0022445 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Romero-Garcia S, Moreno-Altamirano MM, Prado-Garcia H, Sanchez-Garcia FJ (2016) Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7:52.  https://doi.org/10.3389/fimmu.2016.00052 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Ryder C, McColl K, Zhong F, Distelhorst CW (2012) Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. J Biol Chem 287(33):27863–27875.  https://doi.org/10.1074/jbc.M112.384685 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Sakamoto A, Kunou S, Shimada K, Tsunoda M, Aoki T, Iriyama C et al (2019) Pyruvate secreted from patient-derived cancer-associated fibroblasts supports survival of primary lymphoma cells. Cancer Sci 110(1):269–278.  https://doi.org/10.1111/cas.13873 CrossRefPubMedGoogle Scholar
  132. Sanita P, Capulli M, Teti A, Galatioto GP, Vicentini C, Chiarugi P et al (2014) Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer 14:154.  https://doi.org/10.1186/1471-2407-14-154 CrossRefPubMedPubMedCentralGoogle Scholar
  133. San-Millan I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 38(2):119–133.  https://doi.org/10.1093/carcin/bgw127. CrossRefPubMedPubMedCentralGoogle Scholar
  134. Schell JC, Rutter J (2013) The long and winding road to the mitochondrial pyruvate carrier. Cancer Metab 1(1):6.  https://doi.org/10.1186/2049-3002-1-6. CrossRefPubMedPubMedCentralGoogle Scholar
  135. Schneiderhan W, Scheler M, Holzmann KH, Marx M, Gschwend JE, Bucholz M et al (2009) CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 58(10):1391–1398.  https://doi.org/10.1136/gut.2009.181412 CrossRefPubMedGoogle Scholar
  136. Semenza GL (2008) Tumor metabolism: cancer cells give and take lactate. J Clin Invest 118(12):3835–3837.  https://doi.org/10.1172/JCI37373. CrossRefPubMedPubMedCentralGoogle Scholar
  137. Seth P, Csizmadia E, Hedblom A, Vuerich M, Xie H, Li M et al (2017) Deletion of lactate Dehydrogenase-A in myeloid cells triggers antitumor immunity. Cancer Res 77(13):3632–3643.  https://doi.org/10.1158/0008-5472.CAN-16-2938 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Shan T, Chen S, Chen X, Lin WR, Li W, Ma J et al (2017) Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep 37(4):1971–1979.  https://doi.org/10.3892/or.2017.5479 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, Huang L et al (2014) Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. elife 3.  https://doi.org/10.7554/eLife.03342
  140. Shi T, Ma Y, Cao L, Zhan S, Xu Y, Fu F et al (2019) B7-H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2. Cell Death Dis 10(4):308.  https://doi.org/10.1038/s41419-019-1549-6 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Shimura T, Noma N, Sano Y, Ochiai Y, Oikawa T, Fukumoto M et al (2014) AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells. Radiother Oncol 112(2):302–307.  https://doi.org/10.1016/j.radonc.2014.07.015 CrossRefPubMedGoogle Scholar
  142. Singer K, Kastenberger M, Gottfried E, Hammerschmied CG, Buttner M, Aigner M et al (2011) Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int J Cancer 128(9):2085–2095.  https://doi.org/10.1002/ijc.25543 CrossRefPubMedGoogle Scholar
  143. Slomiany MG, Grass GD, Robertson AD, Yang XY, Maria BL, Beeson C et al (2009) Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res 69(4):1293–1301.  https://doi.org/10.1158/0008-5472.CAN-08-2491 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118(12):3930–3942.  https://doi.org/10.1172/JCI36843. CrossRefPubMedPubMedCentralGoogle Scholar
  145. Sonveaux P, Copetti T, De Saedeleer CJ, Vegran F, Verrax J, Kennedy KM et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7(3):e33418.  https://doi.org/10.1371/journal.pone.0033418 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Stern R, Shuster S, Neudecker BA, Formby B (2002) Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res 276(1):24–31.  https://doi.org/10.1006/excr.2002.5508 CrossRefPubMedGoogle Scholar
  147. Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ et al (2015) The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem 290(1):46–55.  https://doi.org/10.1074/jbc.M114.603589 CrossRefPubMedGoogle Scholar
  148. Todenhofer T, Seiler R, Stewart C, Moskalev I, Gao J, Ladhar S et al (2018) Selective Inhibition of the Lactate Transporter MCT4 Reduces Growth of Invasive Bladder Cancer. Mol Cancer Ther 17(12):2746–2755.  https://doi.org/10.1158/1535-7163.MCT-18-0107 CrossRefPubMedGoogle Scholar
  149. Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, Rosen N et al (2003) Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen 11(6):504–509CrossRefGoogle Scholar
  150. van der Windt GJ, Pearce EL (2012) Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev 249(1):27–42.  https://doi.org/10.1111/j.1600-065X.2012.01150.x CrossRefPubMedPubMedCentralGoogle Scholar
  151. Van Hee VF, Labar D, Dehon G, Grasso D, Gregoire V, Muccioli GG et al (2017) Radiosynthesis and validation of (+/−)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a PET tracer of lactate to monitor MCT1-dependent lactate uptake in tumors. Oncotarget 8(15):24415–24428.  https://doi.org/10.18632/oncotarget.14705 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033.  https://doi.org/10.1126/science.1160809 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71(7):2550–2560.  https://doi.org/10.1158/0008-5472.can-10-2828 CrossRefPubMedGoogle Scholar
  154. Wagner W, Ciszewski WM, Kania KD (2015) L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal 13:36.  https://doi.org/10.1186/s12964-015-0114-x CrossRefPubMedPubMedCentralGoogle Scholar
  155. Wagner W, Kania KD, Blauz A, Ciszewski WM (2017) The lactate receptor (HCAR1/GPR81) contributes to doxorubicin chemoresistance via ABCB1 transporter up-regulation in human cervical cancer HeLa cells. J Physiol Pharmacol 68(4):555–564. http://www.ncbi.nlm.nih.gov/pubmed/29151072 PubMedGoogle Scholar
  156. Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14(3):267–274.  https://doi.org/10.1016/j.semradonc.2004.04.004 CrossRefPubMedGoogle Scholar
  157. Wang T, Liu G, Wang R (2014) The intercellular metabolic interplay between tumor and immune cells. Front Immunol 5:358.  https://doi.org/10.3389/fimmu.2014.00358 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Warburg O (1956a) On respiratory impairment in cancer cells. Science 124(3215):269–270. http://www.ncbi.nlm.nih.gov/pubmed/13351639 Google Scholar
  159. Warburg O (1956b) On the origin of cancer cells. Science 123(3191):309–314. http://www.ncbi.nlm.nih.gov/pubmed/13298683 CrossRefGoogle Scholar
  160. Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A et al (2011a) Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 10(23):4047–4064.  https://doi.org/10.4161/cc.10.23.18151 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK et al (2011b) Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 10(11):1772–1783.  https://doi.org/10.4161/cc.10.11.15659 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J et al (2017) Metabolic coupling and the reverse Warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin Oncol 44(3):198–203.  https://doi.org/10.1053/j.seminoncol.2017.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Wolf A, Agnihotri S, Guha A (2010) Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 1(7):552–562.  https://doi.org/10.18632/oncotarget.190 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Wu DH, Liang H, Lu SN, Wang H, Su ZL, Zhang L et al (2018a) miR-124 suppresses pancreatic ductal adenocarcinoma growth by regulating monocarboxylate transporter 1-mediated cancer lactate metabolism. Cell Physiol Biochem 50(3):924–935.  https://doi.org/10.1159/000494477 CrossRefPubMedGoogle Scholar
  165. Wu J, Hong Y, Wu T, Wang J, Chen X, Wang Z et al (2018b) Stromal-epithelial lactate shuttle induced by tumorderived interleukin1beta promotes cell proliferation in oral squamous cell carcinoma. Int J Mol Med 41(2):687–696.  https://doi.org/10.3892/ijmm.2017.3267. CrossRefPubMedGoogle Scholar
  166. Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153(2):587–598.  https://doi.org/10.1016/s0002-9440(10)65601-5 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Xiong L, Edwards CK 3rd, Zhou L (2014) The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci 15(10):17411–17441.  https://doi.org/10.3390/ijms151017411 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Yan C, Yang F, Zhou C, Chen X, Han X, Liu X et al (2015) MCT1 promotes the cisplatin-resistance by antagonizing Fas in epithelial ovarian cancer. Int J Clin Exp Pathol 8(3):2710–2718. http://www.ncbi.nlm.nih.gov/pubmed/26045776 PubMedPubMedCentralGoogle Scholar
  169. Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J et al (2018) Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol 20(5):597–609.  https://doi.org/10.1038/s41556-018-0083-6 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Ye H, Zhou Q, Zheng S, Li G, Lin Q, Wei L et al (2018) Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis 9(5):453.  https://doi.org/10.1038/s41419-018-0486-0. CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhao Z, Han F, He Y, Yang S, Hua L, Wu J et al (2014a) Stromal-epithelial metabolic coupling in gastric cancer: stromal MCT4 and mitochondrial TOMM20 as poor prognostic factors. Eur J Surg Oncol 40(10):1361–1368.  https://doi.org/10.1016/j.ejso.2014.04.005 CrossRefPubMedGoogle Scholar
  172. Zhao Z, Wu MS, Zou C, Tang Q, Lu J, Liu D et al (2014b) Downregulation of MCT1 inhibits tumor growth, metastasis and enhances chemotherapeutic efficacy in osteosarcoma through regulation of the NF-kappaB pathway. Cancer Lett 342(1):150–158.  https://doi.org/10.1016/j.canlet.2013.08.042 CrossRefPubMedGoogle Scholar
  173. Zhao Y, Wang D, Xu T, Liu P, Cao Y, Wang Y et al (2015) Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment. Oncotarget 6(36):39196–39210.  https://doi.org/10.18632/oncotarget.5538 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T et al (2016) Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. elife 5:e10250.  https://doi.org/10.7554/eLife.10250 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreia Pereira-Nunes
    • 1
    • 2
  • Julieta Afonso
    • 1
    • 2
  • Sara Granja
    • 1
    • 2
  • Fátima Baltazar
    • 1
    • 2
    Email author
  1. 1.Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
  2. 2.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal

Personalised recommendations