Advertisement

In Vitro and Ex Vivo Models – The Tumor Microenvironment in a Flask

  • Catarina Pinto
  • Marta F. Estrada
  • Catarina BritoEmail author
Chapter
  • 219 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1219)

Abstract

Experimental tumor modeling has long supported the discovery of fundamental mechanisms of tumorigenesis and tumor progression, as well as provided platforms for the development of novel therapies. Still, the attrition rates observed today in clinical translation could be, in part, mitigated by more accurate recapitulation of environmental cues in research and preclinical models. The increasing understanding of the decisive role that tumor microenvironmental cues play in the outcome of drug response urges its integration in preclinical tumor models. In this chapter we review recent developments concerning in vitro and ex vivo approaches.

Keywords

Cancer models Tumor explants 3D cell cultures Experimental tumor modeling Tumor microenvironment 

Notes

Acknowledgments

The authors acknowledge iNOVA4Health – UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement.

References

  1. Ahmadzadeh M, Rosenberg SA (2005) TGF-beta1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol 174:5215–5223PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andersen T et al (2015) 3D Cell Culture in Alginate Hydrogels. Microarrays 4:133–161PubMedCrossRefPubMedCentralGoogle Scholar
  3. Benien P, Swami A (2014) 3D tumor models: history, advances and future perspectives. Future Oncol 10:1311–1327PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bissell MJ et al (2005) Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol 70:343–356PubMedCrossRefPubMedCentralGoogle Scholar
  6. Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18:240–249PubMedCrossRefPubMedCentralGoogle Scholar
  7. Broderick L, Bankert RB (2006) Membrane-associated TGF-beta1 inhibits human memory T cell Signaling in malignant and nonmalignant inflammatory microenvironments. J Immunol 177:3082–3088PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bussard KM et al (2010) Reprogramming human cancer cells in the mouse mammary gland. Cancer Res 70:6336–6343PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chang HY et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:e7PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chang HY et al (2005) From the cover: robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci 102:3738–3743PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chaudhuri O et al (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13:970–978PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chen CS (2016) 3D biomimetic cultures: the next platform for cell biology. Trends Cell Biol 26:798–800PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chen A et al (2009) Endothelial cell migration and vascular endothelial growth factor expression are the result of loss of breast tissue polarity. Cancer Res 69:6721–6729PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chimal-Ramírez GK et al (2013) MMP1, MMP9, and COX2 expressions in Promonocytes are induced by breast cancer cells and correlate with collagen degradation, transformation-like morphological changes in MCF-10A acini, and tumor aggressiveness. Biomed Res Int 2013:1–15CrossRefGoogle Scholar
  15. Chwalek K et al (2014) Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models. Sci Rep 4:4–11Google Scholar
  16. Costa A et al (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast Cancer. Cancer Cell 33:463–479.e10PubMedCrossRefPubMedCentralGoogle Scholar
  17. Davies EJ et al (2015) Capturing complex tumour biology in vitro: histological and molecular characterisation of precision cut slices. Sci Rep 5:17187PubMedCrossRefPubMedCentralGoogle Scholar
  18. De Monte L et al (2011) Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 208:469–478PubMedCrossRefPubMedCentralGoogle Scholar
  19. Dijkstra KK et al (2018) Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174:1586–1598.e12PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dolznig H et al (2011) Modeling colon adenocarcinomas in vitro. Am J Pathol 179:487–501PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dumont N et al (2013) Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 15:249–IN7PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dutta D et al (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23:393–410PubMedCrossRefPubMedCentralGoogle Scholar
  23. Estrada MF et al (2016) Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression. Biomaterials 78:50–61PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fang X et al (2013) Novel 3D co-culture model for epithelial-stromal cells interaction in prostate cancer. PLoS One 8:1–10Google Scholar
  25. Farmer P et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74PubMedCrossRefPubMedCentralGoogle Scholar
  26. Finak G et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527PubMedCrossRefPubMedCentralGoogle Scholar
  27. Friedrich J et al (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gjorevski N et al (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539:560–564PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gu L, Mooney DJ (2015) Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat Rev Cancer 16:56–66CrossRefGoogle Scholar
  30. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  32. Hauptmann S et al (1993) Macrophages and multicellular tumor spheroids in co-culture: a three-dimensional model to study tumor-host interactions. Evidence for macrophage-mediated tumor cell proliferation and migration. Am J Pathol 143:1406–1415PubMedPubMedCentralGoogle Scholar
  33. Haycock JW (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol Biol 695:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hickman JA et al (2014) Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J 9:1115–1128PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hirschhaeuser F et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148:3–15PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hirt C et al (2014) “In vitro” 3D models of tumor-immune system interaction. Adv Drug Deliv Rev 79–80:145–154PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hoarau-Véchot J et al (2018) Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci 19:181CrossRefGoogle Scholar
  38. Huch M, Rawlins EL (2017) Cancer: tumours build their niche. Nature 545:292–293PubMedCrossRefPubMedCentralGoogle Scholar
  39. Inman JL, Bissell MJ (2010) Apical polarity in three-dimensional culture systems: where to now? J Biol 9:2PubMedCrossRefPubMedCentralGoogle Scholar
  40. Jiang X, Shapiro DJ (2014) The immune system and inflammation in breast cancer. Mol Cell Endocrinol 382:673–682PubMedCrossRefPubMedCentralGoogle Scholar
  41. Katt ME et al (2016) In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 4:12PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kaur P et al (2011) Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue. J Histochem Cytochem 59:1087–1100PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kim JH et al (2012a) The role of myofibroblasts in upregulation of S100A8 and S100A9 and the differentiation of myeloid cells in the colorectal cancer microenvironment. Biochem Biophys Res Commun 423:60–66PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kim H et al (2012b) Changes in global gene expression associated with 3D structure of Tumors: an ex vivo matrix-free mesothelioma spheroid model. PLoS One 7:e39556PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kimlin LC et al (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52:167–182PubMedCrossRefPubMedCentralGoogle Scholar
  46. Korving J et al (2017) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172:373–386.e10PubMedPubMedCentralGoogle Scholar
  47. Kraman M et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–830PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lakins MA et al (2018) Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T cells to protect tumour cells. Nat Commun 9:948PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lech M, Anders HJ (2013) Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta Mol basis Dis 1832:989–997CrossRefGoogle Scholar
  50. Levental KR et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lovitt CJ et al (2016) Cancer drug discovery: recent innovative approaches to tumor modeling. Expert Opin Drug Discovery 11:885–894CrossRefGoogle Scholar
  52. Mafi P et al (2012) Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering – a systematic review of the literature. Curr Stem Cell Res Ther 7:302–309PubMedCrossRefPubMedCentralGoogle Scholar
  53. Majumder B et al (2015) Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun 6:1–14CrossRefGoogle Scholar
  54. Mak IWY et al (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 6:114–118PubMedPubMedCentralGoogle Scholar
  55. McGranahan N, Swanton C (2017) Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–628CrossRefPubMedGoogle Scholar
  56. McMillin DW et al (2010) Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 16:483–489PubMedCrossRefPubMedCentralGoogle Scholar
  57. Murdoch C (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mürdter TE et al (2006) Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment. BMC Cancer 6:1–11CrossRefGoogle Scholar
  59. Nath S, Devi GR (2016) Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther 163:94–108PubMedCrossRefPubMedCentralGoogle Scholar
  60. Neal JT et al (2018) Organoid modeling of the tumor immune microenvironment. Cell 175:1972–1988.e16PubMedCrossRefPubMedCentralGoogle Scholar
  61. Nieto MA et al (2016) EMT: 2016. Cell 166:21–45CrossRefGoogle Scholar
  62. Nyga A et al (2016) The next level of 3D tumour models: immunocompetence. Drug Discov Today 21:1421–1428PubMedCrossRefPubMedCentralGoogle Scholar
  63. Oliveira MJ et al (2017) Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials 124:211–224PubMedCrossRefPubMedCentralGoogle Scholar
  64. Pampaloni F et al (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845PubMedCrossRefPubMedCentralGoogle Scholar
  65. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437PubMedCrossRefPubMedCentralGoogle Scholar
  66. Rebelo SP et al (2018) 3D-3-culture: a tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials 163:185–197PubMedCrossRefPubMedCentralGoogle Scholar
  67. Regier MC et al (2016) Progress towards understanding heterotypic interactions in multi-culture models of breast cancer. Integr Biol 8:684–692CrossRefGoogle Scholar
  68. Rijal G, Li W (2016) 3D scaffolds in breast cancer research. Biomaterials 81:135–156PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ronca R et al (2018) Paracrine interactions of cancer-associated fibroblasts, macrophages and endothelial cells. Curr Opin Oncol 30:45–53PubMedCrossRefPubMedCentralGoogle Scholar
  70. Russnes HG et al (2017) Breast cancer molecular stratification: from intrinsic subtypes to integrative clusters. Am J Pathol 187:2152–2162PubMedCrossRefPubMedCentralGoogle Scholar
  71. Salmon H et al (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest 122:899–910PubMedCrossRefPubMedCentralGoogle Scholar
  72. Shafiee H et al (2015) Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today 18:539–553CrossRefGoogle Scholar
  73. Shamir ER et al (2012) ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc Natl Acad Sci 109:E2595–E2604PubMedCrossRefPubMedCentralGoogle Scholar
  74. Smithmyer ME et al (2014) Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater Sci 2:634–650PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sokol ES et al (2016) Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res 18:1–13CrossRefGoogle Scholar
  76. Spagnoli GC et al (2017) Ex-vivo assessment of drug response on breast cancer primary tissue with preserved microenvironments. Oncoimmunology.  https://doi.org/10.1080/2162402x.2017.1331798
  77. Stanton SE, Disis ML (2016) Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 4:1–7CrossRefGoogle Scholar
  78. Stock K et al (2016) Capturing tumor complexity in vitro: comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep 6:28951PubMedCrossRefPubMedCentralGoogle Scholar
  79. Straussman R et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504PubMedCrossRefPubMedCentralGoogle Scholar
  80. Sun Y (2015) Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures. Med Res Rev 35(2):408–436PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sung KE, Beebe DJ (2014) Microfluidic 3D models of cancer. Adv Drug Deliv Rev 79:68–78PubMedCrossRefPubMedCentralGoogle Scholar
  82. Tang H et al (2016) Immunotherapy and tumor microenvironment. Cancer Lett 370:85–90PubMedCrossRefPubMedCentralGoogle Scholar
  83. Tanos T et al (2013) Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med 5:182ra55PubMedCrossRefPubMedCentralGoogle Scholar
  84. Thomas RM et al (2016) Concepts in cancer modeling: a brief history. Cancer Res 76:5921–5925PubMedCrossRefPubMedCentralGoogle Scholar
  85. Thottassery JV et al (2004) Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast Cancer Res 7:R46–R59PubMedCrossRefPubMedCentralGoogle Scholar
  86. Toullec A et al (2010) Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med 2:211–230PubMedCrossRefPubMedCentralGoogle Scholar
  87. Turley SJ et al (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15:669–682PubMedCrossRefPubMedCentralGoogle Scholar
  88. Unger C et al (2014) Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Adv Drug Deliv Rev 79:50–67PubMedCrossRefPubMedCentralGoogle Scholar
  89. Velez DO et al (2017) 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat Commun 8(1):1651PubMedCrossRefPubMedCentralGoogle Scholar
  90. Voskoglou-Nomikos T et al (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239PubMedPubMedCentralGoogle Scholar
  91. Weaver VM et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245PubMedCrossRefPubMedCentralGoogle Scholar
  92. Weigelt B et al (2014) The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv Drug Deliv Rev 69–70:42–51PubMedCrossRefPubMedCentralGoogle Scholar
  93. Weiswald LB et al (2015) Spherical cancer models in tumor biology. Neoplasia 17:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  94. Xu R et al (2009) Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. J Cell Biol 184:57–66PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Catarina Pinto
    • 1
    • 2
  • Marta F. Estrada
    • 1
    • 2
  • Catarina Brito
    • 1
    • 2
    Email author
  1. 1.iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
  2. 2.Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de LisboaOeirasPortugal

Personalised recommendations