Advertisement

Animal Models to Study Cancer and Its Microenvironment

  • N. MendesEmail author
  • P. Dias Carvalho
  • F. Martins
  • S. Mendonça
  • A. R. Malheiro
  • A. Ribeiro
  • J. Carvalho
  • S. VelhoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1219)

Abstract

Cancers are complex tissues composed by genetically altered cancer cells and stromal elements such as inflammatory/immune cells, fibroblasts, endothelial cells and pericytes, neuronal cells, and a non-cellular component, the extracellular matrix. The complex network of interactions and crosstalk established between cancer cells and the supportig cellular and non-cellular components of the microenvironment are of extreme importance for tumor initiation and progression, strongly impacting the course and the outcome of the disease. Therefore, a better understanding of the tumorigenic processes implies the combined study of the cancer cell and the biologic, chemical and mechanic constituents of the tumor microenvironment, as their concerted action plays a major role in the carcinogenic pathway and is a key determinant of the efficacy of anti-cancer treatments. The use of animal models (e.g. Mouse, Zebrafish and Drosophila) to study cancer has greatly impacted our understanding of the processes governing initiation, progression and metastasis and allowed the discovery and pre-clinical validation of novel cancer treatments as it allows to recreate tumor development in a more pathophysiologic environment.

Keywords

Tumor microenvironment (TME) Animal models Mouse Zebrafish Drosophila Cancer progression Metastasis 

Notes

Acknowledgements

AR, SM, FM were hired through FEDER funds through the Operational Programme for Competitiveness Factors (COMPETE 2020), Programa Operacional de Competitividade e Internacionalização (POCI), Programa Operacional Regional do Norte (Norte 2020), European Regional Development Fund (ERDF) and by National Funds through the Portuguese Foundation for Science and Technology (FCT), under the projects PTDC/MED-ONC/31354/2017, POCI-01-0145-FEDER-016390, and NORTE-01-0145-FEDER-000029, respectively. SV and JC were hired by IPATIMUP under norma transitória do DL n.° 57/2016 alterada pela Law n.° 57/2017.

References

  1. Amatruda JF, Patton EE (2008) Genetic models of cancer in zebrafish. Int Rev Cell Mol Biol 271:1–34.  https://doi.org/10.1016/S1937-6448(08)01201-XCrossRefPubMedGoogle Scholar
  2. Antonio N, Bønnelykke-Behrndtz ML, Ward LC, Collin J, Christensen IJ, Steiniche T et al (2015) The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J 34(17):2219–2236.  https://doi.org/10.15252/embj.201490147CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bangi E (2013) Drosophila at the intersection of infection, inflammation, and cancer. Front Cell Infect Microbiol 3:103.  https://doi.org/10.3389/fcimb.2013.00103CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blomme A, Van Simaeys G, Doumont G, Costanza B, Bellier J, Otaka Y et al (2018) Murine stroma adopts a human-like metabolic phenotype in the PDX model of colorectal cancer and liver metastases. Oncogene 37(9):1237–1250.  https://doi.org/10.1038/s41388-017-0018-xCrossRefPubMedGoogle Scholar
  5. Calles A, Rubio-Viqueira B, Hidalgo M (2013) Primary human non-small cell lung and pancreatic tumorgraft models–utility and applications in drug discovery and tumor biology. Curr Protoc Pharmacol Chapter 14(1), Unitas 14.26–14.26.21.  https://doi.org/10.1002/0471141755.ph1426s61CrossRefGoogle Scholar
  6. Cassidy JW, Caldas C, Bruna A (2015) Maintaining tumor heterogeneity in patient-derived tumor Xenografts. Cancer Res 75(15):2963–2968.  https://doi.org/10.1158/0008-5472.CAN-15-0727CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chao C, Widen SG, Wood TG, Zatarain JR, Johnson P, Gajjar A et al (2017) Patient-derived Xenografts from colorectal carcinoma: a temporal and hierarchical study of murine stromal cell replacement. Anticancer Res 37(7):3405–3412.  https://doi.org/10.21873/anticanres.11707CrossRefPubMedPubMedCentralGoogle Scholar
  8. Choi Y, Lee S, Kim K, Kim S-H, Chung Y-J, Lee C (2018) Studying cancer immunotherapy using patient-derived Xenografts (PDXs) in humanized mice. Exp Mol Med 50(8):99.  https://doi.org/10.1038/s12276-018-0115-0CrossRefPubMedPubMedCentralGoogle Scholar
  9. Day C-P, Merlino G, Van Dyke T (2015) Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163(1):39–53.  https://doi.org/10.1016/j.cell.2015.08.068CrossRefPubMedPubMedCentralGoogle Scholar
  10. Devaud C, Westwood JA, John LB, Flynn JK, Paquet-Fifield S, Duong CPM et al (2014) Tissues in different anatomical sites can sculpt and vary the tumor microenvironment to affect responses to therapy. Mol Ther 22(1):18–27.  https://doi.org/10.1038/mt.2013.219CrossRefPubMedGoogle Scholar
  11. Dias Carvalho P, Guimarães CF, Cardoso AP, Mendonça S, Costa ÂM, Oliveira MJ, Velho S (2018) KRAS oncogenic signaling extends beyond cancer cells to orchestrate the microenvironment. Cancer Res 78(1):7–14.  https://doi.org/10.1158/0008-5472.CAN-17-2084CrossRefPubMedGoogle Scholar
  12. Dong Z, Imai A, Krishnamurthy S, Zhang Z, Zeitlin BD, Nör JE (2013) Xenograft tumors vascularized with murine blood vessels may overestimate the effect of anti-tumor drugs: a pilot study. PLoS One 8(12):e84236.  https://doi.org/10.1371/journal.pone.0084236CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fidler IJ, Hart IR (1982) Biological diversity in metastatic neoplasms: origins and implications. Science 217(4564):998–1003CrossRefGoogle Scholar
  14. Fiebig HH, Schuchhardt C, Henss H, Fiedler L, Löhr GW (1984) Comparison of tumor response in nude mice and in the patients. Behring Inst Mitt 74:343–352Google Scholar
  15. Fior R, Póvoa V, Mendes RV, Carvalho T, Gomes A, Figueiredo N, Ferreira MG (2017) Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci USA 114(39):E8234–E8243.  https://doi.org/10.1073/pnas.1618389114CrossRefPubMedGoogle Scholar
  16. Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R (2019) Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer 18(1):70.  https://doi.org/10.1186/s12943-019-0994-2CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fu X, Guadagni F, Hoffman RM (1992) A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci USA 89(12):5645–5649CrossRefGoogle Scholar
  18. Ganesh K, Massagué J (2018) TGF-β inhibition and immunotherapy: checkmate. Immunity 48(4):626–628.  https://doi.org/10.1016/j.immuni.2018.03.037CrossRefPubMedPubMedCentralGoogle Scholar
  19. Garraway LA, Jänne PA (2012) Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov 2(3):214–226.  https://doi.org/10.1158/2159-8290.CD-12-0012CrossRefPubMedGoogle Scholar
  20. Gnerlich JL, Mitchem JB, Weir JS, Sankpal NV, Kashiwagi H, Belt BA et al (2010) Induction of Th17 cells in the tumor microenvironment improves survival in a murine model of pancreatic cancer. J Immunol 185(7):4063–4071.  https://doi.org/10.4049/jimmunol.0902609CrossRefPubMedPubMedCentralGoogle Scholar
  21. Grifoni D, Sollazzo M, Fontana E, Froldi F, Pession A (2015) Multiple strategies of oxygen supply in Drosophila malignancies identify tracheogenesis as a novel cancer hallmark. Sci Rep 5(1):9061.  https://doi.org/10.1038/srep09061CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322.  https://doi.org/10.1016/j.ccr.2012.02.022CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  24. Heyer J, Kwong LN, Lowe SW, Chin L (2010) Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer 10(7):470–480.  https://doi.org/10.1038/nrc2877CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B et al (2011) A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther 10(8):1311–1316.  https://doi.org/10.1158/1535-7163.MCT-11-0233CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C et al (2014) Patient-derived Xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9):998–1013.  https://doi.org/10.1158/2159-8290.CD-14-0001CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hoover RG, Gullickson G, Kornbluth J (2012) Natural killer lytic-associated molecule plays a role in controlling tumor dissemination and metastasis. Front Immunol 3(393).  https://doi.org/10.3389/fimmu.2012.00393
  28. Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A et al (2015) Stromal contribution to the colorectal cancer transcriptome. Nat Genet 47(4):312–319.  https://doi.org/10.1038/ng.3224CrossRefPubMedGoogle Scholar
  29. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84(10):1424–1431.  https://doi.org/10.1054/bjoc.2001.1796CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jung J, Seol HS, Chang S (2018) The generation and application of patient-derived Xenograft model for Cancer research. Cancer Res Treat 50(1):1–10.  https://doi.org/10.4143/crt.2017.307CrossRefPubMedGoogle Scholar
  31. Katigbak A, Robert F, Paquet M, Pelletier J (2018) Inducible genome editing with conditional CRISPR/Cas9 mice. G3 (Bethesda) 8(5):1627–1635.  https://doi.org/10.1534/g3.117.300327CrossRefGoogle Scholar
  32. Kemp CJ (2015) Animal models of chemical carcinogenesis: driving breakthroughs in Cancer research for 100 years. Cold Spring Harb Protoc 2015(10):865–874.  https://doi.org/10.1101/pdb.top069906CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kersten K, de Visser KE, van Miltenburg MH, Jonkers J (2017) Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 9(2):137–153.  https://doi.org/10.15252/emmm.201606857CrossRefPubMedGoogle Scholar
  34. Kirchberger S, Sturtzel C, Pascoal S, Distel M (2017) Quo natas, Danio?-recent progress in modeling cancer in zebrafish. Front Oncol 7(186).  https://doi.org/10.3389/fonc.2017.00186
  35. Lechner MG, Karimi SS, Barry-Holson K, Angell TE, Murphy KA, Church CH et al (2013) Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. J Immunother 36(9):477–489.  https://doi.org/10.1097/01.cji.0000436722.46675.4aCrossRefPubMedPubMedCentralGoogle Scholar
  36. Lindner D (2014) Animal models and the tumor microenvironment: studies of tumor-host symbiosis. Semin Oncol 41(2):146–155.  https://doi.org/10.1053/j.seminoncol.2014.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liu S, Leach SD (2011) Zebrafish models for cancer. Annu Rev Pathol 6(1):71–93.  https://doi.org/10.1146/annurev-pathol-011110-130330CrossRefPubMedGoogle Scholar
  38. Liu Y, Yin T, Feng Y, Cona MM, Huang G, Liu J et al (2015) Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant Imaging Med Surg 5(5):708–729.  https://doi.org/10.3978/j.issn.2223-4292.2015.06.01CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y et al (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548.  https://doi.org/10.1038/nature25501CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mattern J, Bak M, Hahn EW, Volm M (1988) Human tumor xenografts as model for drug testing. Cancer Metastasis Rev 7(3):263–284CrossRefGoogle Scholar
  41. McCreery MQ, Halliwill KD, Chin D, Delrosario R, Hirst G, Vuong P et al (2015) Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers. Nat Med 21(12):1514–1520.  https://doi.org/10.1038/nm.3979CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mendes N, Tortosa F, Valente A, Marques F, Matos A, Morais TS et al (2017) Vivo performance of a ruthenium-cyclopentadienyl compound in an Orthotopic triple negative breast Cancer model. Anti Cancer Agents Med Chem 17(1):126–136Google Scholar
  43. Miles WO, Dyson NJ, Walker JA (2011) Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech 4(6):753–761.  https://doi.org/10.1242/dmm.006908CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mione MC, Trede NS (2010) The zebrafish as a model for cancer. Dis Model Mech 3(9–10):517–523.  https://doi.org/10.1242/dmm.004747CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mirzoyan Z, Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P (2019) Drosophila melanogaster: a model organism to study cancer. Front Genet 10(51).  https://doi.org/10.3389/fgene.2019.00051
  46. Parvy J-P, Hodgson JA, Cordero JB (2018) Drosophila as a model system to study nonautonomous mechanisms affecting tumour growth and cell death. Biomed Res Int 2018(9):7152962–7152913.  https://doi.org/10.1155/2018/7152962CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech 1(2–3):144–154. discussion 153.  https://doi.org/10.1242/dmm.000950CrossRefPubMedPubMedCentralGoogle Scholar
  48. Richardson HE, Portela M (2018) Modelling cooperative tumorigenesis in Drosophila. Biomed Res Int 2018(4):4258387–4258329.  https://doi.org/10.1155/2018/4258387CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sánchez-Rivera FJ, Jacks T (2015) Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15(7):387–395.  https://doi.org/10.1038/nrc3950CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sanmamed MF, Chester C, Melero I, Kohrt H (2016) Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann Oncol 27(7):1190–1198.  https://doi.org/10.1093/annonc/mdw041CrossRefPubMedGoogle Scholar
  51. Sharpless NE, Depinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5(9):741–754.  https://doi.org/10.1038/nrd2110CrossRefPubMedGoogle Scholar
  52. Shive HR (2013) Zebrafish models for human cancer. Vet Pathol 50(3):468–482.  https://doi.org/10.1177/0300985812467471CrossRefPubMedGoogle Scholar
  53. Singh M, Murriel CL, Johnson L (2012) Genetically engineered mouse models: closing the gap between preclinical data and trial outcomes. Cancer Res 72(11):2695–2700.  https://doi.org/10.1158/0008-5472.CAN-11-2786CrossRefPubMedGoogle Scholar
  54. Siolas D, Hannon GJ (2013) Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73(17):5315–5319.  https://doi.org/10.1158/0008-5472.CAN-13-1069CrossRefPubMedPubMedCentralGoogle Scholar
  55. Szatmári T, Lumniczky K, Désaknai S, Trajcevski S, Hídvégi EJ, Hamada H, Sáfrány G (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553.  https://doi.org/10.1111/j.1349-7006.2006.00208.xCrossRefPubMedGoogle Scholar
  56. Teicher BA (2006) Tumor models for efficacy determination. Mol Cancer Ther 5(10):2435–2443.  https://doi.org/10.1158/1535-7163.MCT-06-0391CrossRefGoogle Scholar
  57. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9(6):338–350.  https://doi.org/10.1038/nrclinonc.2012.61CrossRefPubMedPubMedCentralGoogle Scholar
  58. Utama FE, Tran TH, Ryder A, LeBaron MJ, Parlow AF, Rui H (2009) Insensitivity of human prolactin receptors to nonhuman prolactins: relevance for experimental modeling of prolactin receptor-expressing human cells. Endocrinology 150(4):1782–1790.  https://doi.org/10.1210/en.2008-1057CrossRefPubMedGoogle Scholar
  59. Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108(2):135–144CrossRefGoogle Scholar
  60. Varticovski L, Hollingshead MG, Robles AI, Wu X, Cherry J, Munroe DJ et al (2007) Accelerated preclinical testing using transplanted tumors from genetically engineered mouse breast cancer models. Clin Cancer Res 13(7):2168–2177.  https://doi.org/10.1158/1078-0432.CCR-06-0918CrossRefPubMedGoogle Scholar
  61. Walrath JC, Hawes JJ, Van Dyke T, Reilly KM (2010) Genetically engineered mouse models in cancer research. Adv Cancer Res 106:113–164.  https://doi.org/10.1016/S0065-230X(10)06004-5CrossRefPubMedPubMedCentralGoogle Scholar
  62. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189.  https://doi.org/10.1016/j.stem.2007.11.002CrossRefPubMedPubMedCentralGoogle Scholar
  63. Williams JA (2018) Using PDX for preclinical Cancer drug discovery: the evolving field. J Clin Med 7(3):41.  https://doi.org/10.3390/jcm7030041CrossRefPubMedCentralGoogle Scholar
  64. Yada E, Wada S, Yoshida S, Sasada T (2018) Use of patient-derived xenograft mouse models in cancer research and treatment. Future Sci OA 4(3):FSO271.  https://doi.org/10.4155/fsoa-2017-0136CrossRefPubMedGoogle Scholar
  65. Yi L, Zhou C, Wang B, Chen T, Xu M, Xu L, Feng H (2013) Implantation of GL261 neurospheres into C57/BL6 mice: a more reliable syngeneic graft model for research on glioma-initiating cells. Int J Oncol 43(2):477–484.  https://doi.org/10.3892/ijo.2013.1962CrossRefPubMedGoogle Scholar
  66. Young NP, Crowley D, Jacks T (2011) Uncoupling cancer mutations reveals critical timing of p53 loss in sarcomagenesis. Cancer Res 71(11):4040–4047.  https://doi.org/10.1158/0008-5472.CAN-10-4563CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yu JW, Bhattacharya S, Yanamandra N, Kilian D, Shi H, Yadavilli S et al (2018) Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS One 13(11):e0206223.  https://doi.org/10.1371/journal.pone.0206223CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhao Y, Shuen TWH, Toh TB, Chan XY, Liu M, Tan SY et al (2018) Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. Gut 67(10):1845–1854.  https://doi.org/10.1136/gutjnl-2017-315201CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • N. Mendes
    • 1
    • 2
    Email author
  • P. Dias Carvalho
    • 1
    • 2
  • F. Martins
    • 1
    • 2
  • S. Mendonça
    • 1
    • 2
  • A. R. Malheiro
    • 1
    • 3
  • A. Ribeiro
    • 1
    • 2
  • J. Carvalho
    • 1
    • 2
  • S. Velho
    • 1
    • 2
    Email author
  1. 1.i3S, Instituto de Investigação e Inovação em SaúdePortoPortugal
  2. 2.IPATIMUP, Instituto de Patologia Molecular e Imunologia da Universidade do PortoPortoPortugal
  3. 3.IBMC, Instituto de Biologia Molecular e Celular da Universidade do PortoPortoPortugal

Personalised recommendations