Effects of Zinc Oxide Nanoparticles on Crop Plants: A Perspective Analysis

  • Mohammad Faizan
  • Shamsul Hayat
  • John Pichtel
Part of the Sustainable Agriculture Reviews book series (SARV, volume 41)


Nanotechnology is among the most innovative fields of twenty-first century. Nanoparticles (NPs) are organic or inorganic materials having sizes ranging from 1 to 100 nm; in recent years NPs have come into extensive use worldwide. The dramatic increase in use of NPs in numerous applications has greatly increased the likelihood of their release to the environment. Zinc oxide nanoparticles (ZnO-NPs) are considered a ‘biosafe material’ for organisms. Earlier studies have demonstrated the potential of ZnO-NPs for stimulation of seed germination and plant growth as well as disease suppression and plant protection by virtue of their antimicrobial activity. Both positive and negative effects of ZnO NPs on plant growth and metabolism at various developmental periods have been documented. Uptake, translocation and accumulation of ZnO-NPs by plants depend upon the distinct features of the NPs as well as on the physiology of the host plant. This review will contribute to current understanding the fate and behavior of ZnO-NPs in plants, their uptake, translocation and impacts on mitigating several negative plant growth conditions.


Antimicrobial activity Biosafe Seed germination Translocation 


  1. Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016) Impact of zinc oxide nanoparticle application on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (solanum lycopersicum mill.) under salt stress. Arch Biol Sci 68:723–735CrossRefGoogle Scholar
  2. Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics J 9:106–114Google Scholar
  3. Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblics Officinalis fruit extract and their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aravind P, Prasad MNV (2005) Cadmium–zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistryand molecular toxicology. Braz J Plant Physiol 17:3–20CrossRefGoogle Scholar
  5. Asmub M, Mullenders LHF, Hartwig A (2000) Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxico Lett 15(112–113):227–231Google Scholar
  6. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313PubMedCrossRefPubMedCentralGoogle Scholar
  7. BCC Research (2014) Global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes. Accessed 19 Oct 2017
  8. Beddington J (2010) Food security: contributions from science to a new and greener revolution. Philos Trans R Soc B Biol Sci 365(1537):61–71CrossRefGoogle Scholar
  9. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317PubMedCrossRefGoogle Scholar
  10. Biswas P, Wu CY (2005) Critical review: nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746CrossRefGoogle Scholar
  11. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boxall A, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles. Technical Report, Central Science Laboratory, YorkGoogle Scholar
  13. Brayner R, Dahoumane SA, Yepremian C, Djediat C, Meyer M, Coute A, Fievet F (2010) Zinc oxide nanoparticles: synthesis, characterization and ecotoxicological studies. Langmuir 26:6522–6528PubMedCrossRefPubMedCentralGoogle Scholar
  14. Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–612CrossRefGoogle Scholar
  15. Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24CrossRefGoogle Scholar
  16. Capaldi Arruda SC, Silva A, D L, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705CrossRefGoogle Scholar
  17. Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 2059(4411):1144–1147CrossRefGoogle Scholar
  18. Castillo RR, Lozano D, Gonzalez B, Manzano M, Izquierdo-Barba I, Vallet-Regi M (2019) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opin Drug Deliv 16(4):415–439PubMedCrossRefGoogle Scholar
  19. Chaudhary D, Basanti B, Singh DJ, Subhash K, Anil P (2018) An insight into in vitro micropropagation studies for banana- review. Int J Agri Sci 10(5):5346–5349Google Scholar
  20. Chen C, Liu P, Lu C (2008) Investigation of photocatalytic degradation using nano-sized ZnO catalysts. Chem Eng J 144:509–513CrossRefGoogle Scholar
  21. Chichiricco G, Poma A (2015) Penetration and toxicity of nanomaterial in higher plants. Nanomaterials 5:851–873PubMedPubMedCentralCrossRefGoogle Scholar
  22. Connolly M, Fernandez M, Conde E, Torrent F, Navas JM, Fernandez-Cruz ML (2016) Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 1(551–552):334–343CrossRefGoogle Scholar
  23. de la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea- Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174CrossRefGoogle Scholar
  24. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:e1CrossRefGoogle Scholar
  25. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy A (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9:e111289PubMedPubMedCentralCrossRefGoogle Scholar
  26. Elumalai EK, Prasad TNVKV, Hemachandran J, Vivivan Therasa S, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res 2:549–554Google Scholar
  27. Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200PubMedPubMedCentralCrossRefGoogle Scholar
  28. Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticles-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56:678–686CrossRefGoogle Scholar
  29. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell wall is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturon II. Plant Physiol 121:829–838PubMedPubMedCentralCrossRefGoogle Scholar
  30. Garg N, Kaur H (2013) Impact of cadmium-zinc interactions on metal uptake, translocation and yield in pigeonpea genotypes colonized by arbuscular mycorrhizal fungi. J Plant Nutr 36:67–90CrossRefGoogle Scholar
  31. Ghasemi F, Jalal R (2016) Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J Glob Antimicrob Resist 6:118–122PubMedCrossRefGoogle Scholar
  32. Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32PubMedCrossRefGoogle Scholar
  33. Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrients malnutrition through enhancing the nutritional quality of staple foods principles, perspectives and knowledge gaps. Adv Agron 70:77–142CrossRefGoogle Scholar
  34. Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350PubMedCrossRefGoogle Scholar
  35. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325PubMedCrossRefGoogle Scholar
  36. Hassan N, Salah T, Hendawey MH, Borai IH, Mahdi AA (2018) Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants. Curr Nanomaterials 3:32–43CrossRefGoogle Scholar
  37. Hemanth NKS, Kumar G, Karthik L, Bhaskara RKV (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2:161–167Google Scholar
  38. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229–252PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hussain A, Ali S, Rizwan M, Rehman MZ, Javed MR, Imran M, Chatha SA, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242:1518–1526PubMedCrossRefPubMedCentralGoogle Scholar
  41. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protec 35:64–70CrossRefGoogle Scholar
  42. Kool PL, Ortiz MD, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCL2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719PubMedCrossRefGoogle Scholar
  43. Koch U, Fojtik A, Weller H, Henglein A (2000) Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Lett 122:507–510CrossRefGoogle Scholar
  44. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306PubMedCrossRefGoogle Scholar
  45. Lacerda JS, Martinez HE, Pedrosa AW, Clemente JM, Santos RH, Oliveira GL, Jifon JL (2018) Importance of zinc for arabica coffee and its effects on the chemical composition of raw grain and beverage quality. Crop Sci 58:1360–1370CrossRefGoogle Scholar
  46. Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70CrossRefGoogle Scholar
  47. Lawre S, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol App Sci 3:874–881Google Scholar
  48. Lee CY, Tseng TY, Li SY, Lin P (2006) Effect of phosphorus dopant on photoluminescence and field-emission characteristics of Mg0.1Zn0.9O nanowires. J Appl Phys 99:024303CrossRefGoogle Scholar
  49. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lin C, Su YB, Takahiro M, Fugetsu B (2010) Multi-walled carbon nanotubes induce oxidative stress and vacuolar structure changes to Arabidopsis T87 suspension cells. Nano Biomed 2:170–181Google Scholar
  51. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139PubMedCrossRefGoogle Scholar
  52. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 NPs on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mahajan P, Dhoke SK, Khanna AS, Tarafdar JC (2011) Effect of nano-ZnO on growth of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Appl Biol Res 13:54–61Google Scholar
  55. Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, San Diego, p 651Google Scholar
  56. Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527PubMedPubMedCentralCrossRefGoogle Scholar
  57. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryol 62:161–165CrossRefGoogle Scholar
  58. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea- Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138PubMedCrossRefGoogle Scholar
  59. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  60. Natarajan K, Subbalaxmi SV, Ramchandra M (2010) Microbial production of silver nanoparticles. Dig J Nanomater Biostruct 5:135–140Google Scholar
  61. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano level. Science 311:622–627PubMedCrossRefPubMedCentralGoogle Scholar
  62. Nelson D, Priscyla DM, Oswaldo LA, Gabriel IHDS, Elisa E (2005) Mechanical aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8CrossRefGoogle Scholar
  63. Panwar J, Jain N, Bhargaya A, Akhtar M, Yun Y (2012) Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing nano-fertilizers. International Conference on Environmental Research and Technology (ICERT), Malaysia
  64. Peng YH, Tsai YC, Hsiung CE, Lin YH, Shih Y (2017) Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. J Hazard Mater 322:348–356PubMedCrossRefPubMedCentralGoogle Scholar
  65. Peralta-Videa JR, Zhao L, Lopez-Morena ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15PubMedCrossRefGoogle Scholar
  66. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on vigna radiata: a detailed molecular, biochemical and biophysical study. Environ Sci Technol 47:13122–13131PubMedCrossRefGoogle Scholar
  67. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Raja Reddy K, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927CrossRefGoogle Scholar
  68. Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A 109:E2451–E2456PubMedPubMedCentralCrossRefGoogle Scholar
  69. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57CrossRefGoogle Scholar
  70. Ramesh M, Palanisamy K, Babu K, Sharma NK (2014a) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422Google Scholar
  71. Ramesh P, Rajendran A, Meenakshisundaram M (2014b) Green synthesis of zinc oxide nanoparticles using flower extract Cassia auriculatas. J Nanosci Nanotechnol 1:41–45Google Scholar
  72. Raskar S, Laware S (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473Google Scholar
  73. Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia ur Rehman M, Waris AA (2019) Zinc iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277PubMedCrossRefGoogle Scholar
  74. Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124CrossRefGoogle Scholar
  75. Sanaeiostovar A, Khoshgoftarmanesh AH, Shariatmadari H, Afyuni M, Schulin R (2012) Combined effect of zinc and cadmium levels on root antioxidative responses in three different zinc-efficient wheat genotypes. J Agron Crop Sci 198:276–285CrossRefGoogle Scholar
  76. Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P (2016) The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: variation in response depends on biotype. Nanomedicine 12:1499–1509PubMedCrossRefGoogle Scholar
  77. Sastry M, Ahmad A, Islam NI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170Google Scholar
  78. Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192CrossRefGoogle Scholar
  79. Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann West Univ Timişoara Ser Biol XVI(2):73–78Google Scholar
  80. Shukla AK, Tiwari PK, Prakash C (2014) Micronutrients deficiencies vis-avis food and nutritional security of India. Indian J Fertil 10:94–112Google Scholar
  81. Sirelkhatim A, Shahrom M, Azman S, Noor HMK, Chuo AL, Siti KMB, Habsah H, Dasmawati M (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Micro Nano Lett 7(3):219–242CrossRefGoogle Scholar
  82. Singh MV (2009) Micronutrient nutritional problems in soils of India and improvement for human and animal’s health. Indian J Fertil 5(4):11–26Google Scholar
  83. Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3:1–12CrossRefGoogle Scholar
  84. Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7:36–47CrossRefGoogle Scholar
  85. Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI, Nowack B (2010) Toxicology 269:160–169PubMedCrossRefPubMedCentralGoogle Scholar
  86. Spero JM, Devito B, Theodore L (2000) Regulatory chemical handbook. CRC press, Boca RatonCrossRefGoogle Scholar
  87. Srivastav AK, Kumar M, Ansari NG, Jain AK, Shankar J, Arjaria N, Jagdale P, Singh D (2016) A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in wistar rats: toxicity study of zinc oxide nanoparticles. Hum Exp Toxicol 35(12):1286–1304PubMedCrossRefPubMedCentralGoogle Scholar
  88. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402PubMedCrossRefPubMedCentralGoogle Scholar
  90. Taheri M, Qarache HA, Qarache AA, Yoosefi M (2015) The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowship J 1:17–20CrossRefGoogle Scholar
  91. Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262CrossRefGoogle Scholar
  92. Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12:60PubMedPubMedCentralCrossRefGoogle Scholar
  93. Torabian S, Zahedi M, Khoshgoftarmanesh A (2016) Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. J Agric Sci Technol 18:1013–1025Google Scholar
  94. Uikey P, Vishwakarma K (2016) Review of zinc oxide (ZnO) nanoparticles applications and properties. Int J Emerg Tech Com Sci Elec 21(2):239Google Scholar
  95. Vaseem M, Umar A, Hahn YB (2010) ZnO Nanoparticles: growth, properties and applications. In: Umar A, Hahn Y-B (eds) Metal oxide nanostructures and their applications, 4th edn. American Scientific Publishers, Los Angeles, pp 1–36Google Scholar
  96. Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metalinduced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wang C, Liu H, Chen J, Tian Y, Shi J, Li D, Guo C, Ma Q (2014) Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. J Hazard Mater 274:404–412PubMedCrossRefPubMedCentralGoogle Scholar
  98. Wang F, Jin X, Adams CA, Shi Z, Sun Y (2018) Decreased ZnO nanoparticles phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus. Environ Sci Pollut Res 25:23736–23747CrossRefGoogle Scholar
  99. Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles. Rev Environ Contam Toxicol 230:83–110PubMedGoogle Scholar
  100. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammad Faizan
    • 1
  • Shamsul Hayat
    • 2
  • John Pichtel
    • 3
  1. 1.Tree Seed Center, College of Forest Resources and EnvironmentNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.Plant Physiology & Biochemistry Section, Department of Botany, Faculty of Life SciencesAligarh Muslim UniversityAligarhIndia
  3. 3.Environment, Geology and Natural ResourcesBall State UniversityMuncieUSA

Personalised recommendations