Advertisement

Synthesis of Metal/Metal Oxide Nanoparticles by Green Methods and Their Applications

  • Latifeh PourakbarEmail author
  • Sina Siavash Moghaddam
  • Jelena Popović-DjordjevićEmail author
Chapter
  • 22 Downloads
Part of the Sustainable Agriculture Reviews book series (SARV, volume 41)

Abstract

Nanotechnology is an exciting field of research; numerous versatile nanoparticles can be synthesized into a range of sizes, shapes, and chemical compositions, ultimately offering extensive applications for humans. Correct synthesis, manipulation, and use of metal NPs grant them with unique thermal, optical and electronic properties. In material science, ‘green’ synthesis has been considered a reliable, sustainable and environmentally-friendly protocol. Non-toxic and environmentally-friendly methods have been developed for synthesis of metal/metal oxide NPs. These techniques use live organisms such as bacteria, fungi, yeast, algae, and plants and their tissues and extracts. The biomolecules of natural extracts, such as enzymes, flavonoids, phenols, and terpenoids can be used as reducing agents of metal ions to metal NPs. Whilst the physical and chemical techniques used in traditional synthesis methods have raised environmental concerns due to use of hazardous chemicals and their possible emissions to the environment, green methods have made it possible to develop a simple, rapid, and environmentally-friendly means of synthesizing NPs. NPs produced by green methods are usually more stable and do not require application of chemical stabilizers; as a result, toxic residues do not enter the environment. Green-synthesized NPs have extensive applications for their antibacterial and antifungal properties and may be used as either plant growth stimulators or inhibitors, depending on their type, size, and shape, as well as the specific plant species.

Keywords

Nanoparticle Green synthesis Natural extracts 

References

  1. Agnihotri S, Mukherji S, Mukherji S (2014) Size controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv:3974–3983.  https://doi.org/10.1039/C3RA44507K CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318.  https://doi.org/10.1016/S0927-7765(02)00174-1 CrossRefGoogle Scholar
  3. Ali I, Qiang TY, Ilahi N, Adnan M, Sajjad W (2018) Green synthesis of silver nanoparticles by using bacterial extract and its antimicrobial activity against pathogens. Int J Biosci 13(5):1–5CrossRefGoogle Scholar
  4. Alia DS, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Jose R, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 14:7637–7643Google Scholar
  5. Aljabali AA, ID Akkam Y, Al Zoubi MS, Al-Batayneh KM, Al-Trad B, Abo Alrob O, Alkilany AM, Benamara M, Evans DJ (2018) Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials 8:1–15.  https://doi.org/10.3390/nano8030174 CrossRefGoogle Scholar
  6. Arya A, Gupta K, Chundawat TS, Vaya D (2018) Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Hindawi Bioinorg Chem Appl 2018:1–9CrossRefGoogle Scholar
  7. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827PubMedCrossRefPubMedCentralGoogle Scholar
  8. Ayesha A (2017) Bacterial synthesis and applications of nanoparticles. Nano Sci Nano Technol Indian J 11:119–126Google Scholar
  9. Beyrami Miavaghi M, Pourakbar L (2016) Phytosynthesis of silvern by medicinal plant Malva neglecta. Qom Univ Med Sci J 10:38–44. (English abstract)Google Scholar
  10. Bhainsa KC, Souza SFD (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf B: Biointerfaces 47:160–164PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bilal M, Rasheed T, Sosa-Hernández JE, Raza A, Nabeel F, Iqbal HMN (2018) Biosorption: an interplay between marine algae and potentially toxic elements—a review. Mar Drugs 16:1–16CrossRefGoogle Scholar
  12. Christian F, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behavior in environmental media. Ecotoxicology 17:326–343PubMedCrossRefPubMedCentralGoogle Scholar
  13. Clement JL, Jarret PS (1994) Antimicrobial silver. Metal Based Drugs 1:467–482.  https://doi.org/10.1155/MBD.1994.467 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Da Silva LC, Oliva MA, Azevedo AA, De Araújo JM (2006) Responses of resting plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256CrossRefGoogle Scholar
  15. David E, Elumalai EK, Prasad TN, Venkata K, Nagajyothi PC (2010) Green synthesis of silver nanoparticle using Euphorbia hirta L and their antifungal activities. Arch Appl Sci Res 2:76–81Google Scholar
  16. Demir E, Kaya N, Kaya B (2014) Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turk J Biol 38:31–39.  https://doi.org/10.3906/biy-1306-11 CrossRefGoogle Scholar
  17. Doble M, Kruthiventi AK (2007) Green chemistry and engineering. Academic, CambridgeGoogle Scholar
  18. Dobrucka R (2017) Synthesis of titanium dioxide nanoparticles using Echinacea purpurea Herba. Iran J Pharm Res 16:753–759Google Scholar
  19. Donaldson K, Tran L, Jimenez L, Duffin A, Newby R, Mills D, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dong ZY, Manik PNR, Xiao M, Hong-Fei W, Wael N, Hozzein Wei C, Wen-Jun L (2017) Antibacterial activity of silver nanoparticles against Staphylococcus warneri synthesized using endophytic bacteria by photo-irradiation. Front Microbiol 8:1–8Google Scholar
  21. Duran N, Marcato P, Alves O, Desouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. NanoBiotechnology 13:3–8Google Scholar
  22. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 369:27–33.  https://doi.org/10.1016/j.colsurfa.2010.07.020 CrossRefGoogle Scholar
  23. Fakhari SH, Jamzad M, Kabiri Fard H (2019) Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev 12:19–24CrossRefGoogle Scholar
  24. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan RS (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109PubMedCrossRefPubMedCentralGoogle Scholar
  25. Forough M, Farhadi KH (2010) Biological and green synthesis of silver nanoparticles. Turk J Eng Environ Sci 34:281–287Google Scholar
  26. Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071CrossRefGoogle Scholar
  27. Franklin N, Rogers N, Apte S, Batley G, Gadd G, Casey P (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21:211–217PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gardea-Torresdey J, Peralta-Videa R, Rosaa G, Parson GJ (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:797–810Google Scholar
  30. Geonmonond RS, Da Silva AGM, Camargo PH (2018) Controlled synthesis of noble metal nanomaterials: motivation, principles, and opportunities in nanocatalysis. Anais Da Academia Brasileira De Ciencias 90:719–744.  https://doi.org/10.1590/0001-3765201820170561 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Henglein A (1993) Physicochemical properties of small metal particles in solution. “Microelectrode” reactions, chemisorptions, composite metal particles, and the atom-to-metal transition. J Phys Chem B 97:5457–5471CrossRefGoogle Scholar
  32. Honary S, Barabadi H, Gharaei – Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Biostruct 7:999–1005Google Scholar
  33. Honary S, Barabadi H, Gharaei Fathabad E, Naghibi F (2013) Green synthesis of silver nanoparticles induced by the Fungus Penicillium citrinum. Trop J Pharm Res 12:7–11Google Scholar
  34. Hong FS, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279PubMedCrossRefGoogle Scholar
  35. Huang Q, Li D, Sun Y, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):1–11.  https://doi.org/10.1088/0957-4484/18/10/105104 CrossRefGoogle Scholar
  36. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res Int 13:225–232PubMedCrossRefGoogle Scholar
  37. Jafari A, Pourakbar L, Farhadi KH, Mohamad Golizad L (2015) Biological synthesis of silver nanoparticles and evalution of antibacterial and antifungal properties of silver and copper nanoparticles. Turk J Biol 39:1–6.  https://doi.org/10.3906/biy-1406-81 CrossRefGoogle Scholar
  38. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074.  https://doi.org/10.3762/bjnano.9.98 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jha AK, Prasad K, Kumar V, Prasad K (2009) Biosynthesis of silver nanoparticles using eclipta leaf. Biotechnol Prog 25:1476–1479.  https://doi.org/10.1002/btpr.233 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Juhel G, Batisse E, Hugues Q, Daly D, Van Pelt FNAM, O’Halloran J, Jansen MAK (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336PubMedCrossRefPubMedCentralGoogle Scholar
  41. Karimi Z, Pourakbar L, Feizi H (2014) Comparison effect of nano-iron chelate and iron chelate on growth parameters and antioxidant enzymes activity of mung bean (Vigna radiate L.). Adv Environ Biol 8:916–930Google Scholar
  42. Kelly KL, Coronado E, Zhao LL, Schatz GC (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  43. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227.  https://doi.org/10.1021/nn900887m CrossRefPubMedPubMedCentralGoogle Scholar
  44. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production andcrop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  45. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kovács E, Nyitrai P, Czövek P, Òvári M, Keresztes A (2009) Investigation into the mechanism of stimulation by low-concentration stressors in barley seedlings. J Plant Physiol 166:72–79PubMedCrossRefGoogle Scholar
  47. Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002a) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818CrossRefGoogle Scholar
  48. Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002b) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100CrossRefGoogle Scholar
  49. Kumar N, Kumbhat S (2016) Carbon-based nanomaterials. In: Essentials in Nanoscience and Nanotechnology. Wiley, Hoboken, pp 189–236.  https://doi.org/10.1002/9781119096122.ch5 CrossRefGoogle Scholar
  50. Kushwaha A, Kumar Singh V, Bhartariya J, Singh P, Yasmeen K (2015) Isolation and identification of E. coli bacteria for the synthesis of silver nanoparticles: characterization of the particles and study of antibacterial activity. Eur J Exp Biol 5:65–70Google Scholar
  51. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefPubMedCentralGoogle Scholar
  52. Li S, Shen Y, Xie A, Yu X, Qui L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858CrossRefGoogle Scholar
  53. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476.  https://doi.org/10.3390/ijms13010466 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Limbach L, Wick P, Manser P, Grass R, Bruinink A, Stark W (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163PubMedCrossRefPubMedCentralGoogle Scholar
  55. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 162:542–550.  https://doi.org/10.1016/j.resmic.2011.04.009 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356PubMedCrossRefPubMedCentralGoogle Scholar
  60. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  61. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  62. Moradi Rikabad M, Pourakbar L, Siavash Moghaddam S, Popović-Djordjević J (2019) Agrobiological, chemical and antioxidant properties of saffron (Crocus sativus L.) exposed to TiO2 nanoparticles and ultraviolet-B stress. Ind Crop Prod 137:137–143.  https://doi.org/10.1016/j.indcrop.2019.05.017 CrossRefGoogle Scholar
  63. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463.  https://doi.org/10.1002/1439-7633(20020503)3:5<461:AID-CBIC461>3.0.CO;2-X CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nair B, Pradeep T (2002) Coalescense of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298CrossRefGoogle Scholar
  65. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  66. Nair R, Poulose AC, Nagaoka Y, Yoshida Y, Maekawa T, Sakthi Kumar D (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–2068PubMedCrossRefPubMedCentralGoogle Scholar
  67. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386PubMedCrossRefPubMedCentralGoogle Scholar
  68. Neal AL (2008) What can be inferred from bacterium nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371.  https://doi.org/10.1007/s10646-008-0217-x CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22PubMedCrossRefPubMedCentralGoogle Scholar
  70. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54PubMedCrossRefPubMedCentralGoogle Scholar
  72. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720.  https://doi.org/10.1128/AEM.02218-06 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pape HL, Serena FS, Contini P, Devillers C, Maftah A, Leprat P (2002) Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 40:2947–2954CrossRefGoogle Scholar
  74. Park HJ, Kim SH, Kim HJ, Choi SH (2007) A new composition of nano sized silica silver for control of various plant diseases. Plant Pathol 22:295–302CrossRefGoogle Scholar
  75. Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27:990–993.  https://doi.org/10.1016/j.msec.2006.09.023 CrossRefGoogle Scholar
  76. Potters G, Pasternak TP, Guisez Y, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105PubMedCrossRefPubMedCentralGoogle Scholar
  77. Pourakbar L, Yosefzaei F, Farhadi K (2019) Biosynthesis of silver nanoparticles from tree gum extracts and evaluation of antibacterial properties of silver and copper nanoparticles. Sci J Ilam Univ Med Sci 26:1–9Google Scholar
  78. Reese RN, Winge DR (1988) Sulfide stabilization of the cadmium–γglutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 263:12832–12835PubMedPubMedCentralGoogle Scholar
  79. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170Google Scholar
  80. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826.  https://doi.org/10.1039/b303808b CrossRefGoogle Scholar
  81. Sharma G, Soni R, Jasuja ND (2017) Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. J Taibah Univ Sci 11:471–477CrossRefGoogle Scholar
  82. Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12:1667–1675.  https://doi.org/10.1007/s11051-009-9835-3 CrossRefGoogle Scholar
  83. Sowani H, Mohite P, Munot H, Shouche Y, Bapat T, Kumar AR, Kulkarni M, Zinjarde S (2016) Green synthesis of gold and silver nanoparticles by an actinomycete Gordonia amicalis HS-11: mechanistic aspects and biological application. Process Biochem 51:374–383CrossRefGoogle Scholar
  84. Suresh J, Yuvakkumar R, Sundrarajan M, Hong SI (2014) Green synthesis of magnesium oxide nanoparticles. Adv Mater Res 952:141–144CrossRefGoogle Scholar
  85. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147.  https://doi.org/10.1016/j.saa.2013.05.030 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Trindade T, O’Brien P, Pickett N (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Reviews. Chem Mater 13:3843–3858CrossRefGoogle Scholar
  87. Tripathy A, Raichur AM, Chandrasekaran N, Prathna AMTC (2009) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract oa Azadirachta indica (Neem) leaves. J Nanopart Res 12:237–246.  https://doi.org/10.1007/s11051-009-9602-5 CrossRefGoogle Scholar
  88. Venkatpurwar V, Pokharkar V (2011) Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. Mater Lett 65:999–1002.  https://doi.org/10.1016/j.matlet.2010.12.057 CrossRefGoogle Scholar
  89. Viau G, Brayner R, Poul L, Chakroune N, Lacaze E, Fievet-Vincent F, Fievet F (2003) Ruthenium nanoparticles: size, shape, and self-assemblies. Chem Mater 15:486–494CrossRefGoogle Scholar
  90. Vinopal S, Runal T, Kotrba P (2007) Biosorption os Cd2+ and Zn2+ bycell surface engineered Saccharomyces cerevisiae. Int Biodeterior Biodegradation 60:96–102CrossRefGoogle Scholar
  91. Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18:1109–1120CrossRefGoogle Scholar
  92. Xia N, Cai Y, Jiang T, Yao J (2011) Green synthesis of silver nanoparticles by chemical reductionwith hyaluronan. Carbohydr Polym 86:956–961.  https://doi.org/10.1016/j.carbpol.2011.05.053 CrossRefGoogle Scholar
  93. Yang L, Watts D (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132PubMedCrossRefPubMedCentralGoogle Scholar
  94. Yuhui M, Linglin K, Xiao H, Wei B, Yayun D, Zhiyong Z, Yuliang Z, Zhifang C (2009) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279Google Scholar
  95. Yusefzaei F, Poorakbar L, Farhadi K, Molaei R (2017) The effect of copper nanoparticles and copper chloride solution on germination and solution some morphological and physiological factors Ocimum basilicum L. Iran J Plant Res 30:1–12. (English abstract)Google Scholar
  96. Yuvakkumar R, Suresh J, Joseph Nathanael A, Sundrarajan M, Hong SI (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C 41:17–27CrossRefGoogle Scholar
  97. Zhang Z, Li F, Xu L, Liu N, Xiao H, Chai Z (2004) Study of binding properties of lanthanum to wheat roots by INAA. J Radioanal Nucl Chem 259:47–49CrossRefGoogle Scholar
  98. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92PubMedCrossRefPubMedCentralGoogle Scholar
  99. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceUrmia UniversityUrmiaIran
  2. 2.Department of Agronomy, Faculty of AgricultureUrmia UniversityUrmiaIran
  3. 3.University of Belgrade, Faculty of AgricultureChair of Chemistry and BiochemistryBelgradeSerbia

Personalised recommendations