Advertisement

Biogas as a Renewable Energy Source: Focusing on Principles and Recent Advances of Membrane-Based Technologies for Biogas Upgrading

  • Francisco M. Baena-MorenoEmail author
  • Estelle le Saché
  • Laura Pastor-Pérez
  • T. R. Reina
Chapter
  • 50 Downloads
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 42)

Abstract

In this work, a comprehensive discussion of biogas upgrading using membrane technologies is presented. Bio-methane obtained from biogas upon carbon dioxide removal is an attractive source of clean energy, and several techniques have been developed for this purpose. These technologies are chemical absorption, water scrubbing, physical absorption, adsorption, cryogenic separation, and membrane separation. Among these techniques, membrane separation outstands due to its promising economic viability. In this work, general characteristics of biogas and its upgrading processes are explained. Then membrane technology for biogas upgrading through gas permeation is analyzed in detail. Gas permeation phenomena, membrane materials, membrane modules, different types of process configuration, and commercial biogas plants based on membrane technologies are deeply investigated. Polymeric membrane materials are under continuous development, and this will facilitate the implementation of membrane-based biogas upgrading processes in many industrial areas. Single-stage configurations are not able to produce both high methane purity and a high recovery percentage. Thus, multistage configurations play an important role in biogas upgrading when membranes are selected to facilitate the CH4/CO2 separation. In this scenario, it is expected that membrane-based biogas upgrading methods will significantly contribute to open new approaches in the urgent matter of sustainable energy technologies.

Keywords

Biogas upgrading Bio-methane Renewable energies Energy sources Membranes for biogas upgrading Gas permeation Carbon capture Polymeric materials Multistage configurations Biogas-based plants 

References

  1. Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Biorefin.  https://doi.org/10.1002/bbb.117 CrossRefGoogle Scholar
  2. AEBIOM (2017) Key findings. European Bioenergy. AEBIOM statistical report outlook. European Biomass Association (AEBIOM)Google Scholar
  3. Ahmad F, Lau KK, Shariff AM, Murshid G, Keong LK, Shariff AM, Murshid G, Petronas UT, Iskandar BS (2012) The study of Joule Thompson effect for the removal of CO2 from natural gas by membrane process. Int J Chem Environ Eng 3(2):15–18.Google Scholar
  4. Alonso-Vicario A, Ochoa-Gómez JR, Gil-Río S, Gómez-Jiménez-Aberasturi O, Ramírez-López CA, Torrecilla-Soria J, Domínguez A (2010) Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous Mesoporous Mater.  https://doi.org/10.1016/j.micromeso.2010.05.014 CrossRefGoogle Scholar
  5. Andriani D, Wresta A, Atmaja TD, Saepudin A (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172(4):1909–1928.  https://doi.org/10.1007/s12010-013-0652-x CrossRefGoogle Scholar
  6. Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv.  https://doi.org/10.1016/j.biotechadv.2018.01.011 CrossRefGoogle Scholar
  7. Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim/Chichester.  https://doi.org/10.1002/9783527629916 CrossRefGoogle Scholar
  8. Arti M, Youn MH, Park KT, Kim HJ, Kim YE, Jeong SK (2017) Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride. Energy Fuel 31(1):763–769.  https://doi.org/10.1021/acs.energyfuels.6b02448 CrossRefGoogle Scholar
  9. Baena-moreno FM, Rodríguez-Galán M, Vega F, Bernabé Alonso-fariñas LF, Arenas V, Navarrete B (2018a) Carbon capture and utilization technologies: a literature review and recent advances. Energy Sources Part A 41(12):1403–1433.  https://doi.org/10.1080/15567036.2018.1548518 CrossRefGoogle Scholar
  10. Baena-Moreno FM, Rodríguez-Galán M, Vega F, Reina TR, Vilches LF, Navarrete B (2018b) Regeneration of sodium hydroxide from a biogas upgrading unit through the synthesis of precipitated calcium carbonate: an experimental influence study of reaction parameters. Processes 6:205.  https://doi.org/10.3390/pr6110205 CrossRefGoogle Scholar
  11. Bailón Allegue L, Hinge J (2014) Biogas upgrading evaluation of methods for H2S removal. Danish Technological Institute.  https://doi.org/10.1074/mcp.M110.002766 CrossRefGoogle Scholar
  12. Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47(7):2109–2121.  https://doi.org/10.1021/ie071083w CrossRefGoogle Scholar
  13. Basu S, Khan AL, Cano-Odena A, Liu C, Vankelecom IFJ (2010) Membrane-based technologies for biogas separations. Chem Soc Rev 39(2):750–768.  https://doi.org/10.1039/b817050a CrossRefGoogle Scholar
  14. Bauer F, Hulteberg C, Persson T, Tamm D (2013) Biogas upgrading – review of commercial technologies. SGC Rapport 2013:270Google Scholar
  15. Bekkering J, Broekhuis AA, van Gemert WJT (2010) Optimisation of a green gas supply chain – a review. Bioresour Technol 101(2):450–456.  https://doi.org/10.1016/j.biortech.2009.08.106 CrossRefGoogle Scholar
  16. Bhide BD, Voskericyan A, Stern SA (1998) Hybrid processes for the removal of acid gases from natural gas. J Membr Sci 140(1):27–49.  https://doi.org/10.1016/S0376-7388(97)00257-3 CrossRefGoogle Scholar
  17. Bond T, Templeton MR (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15(4):347–354.  https://doi.org/10.1016/j.esd.2011.09.003 CrossRefGoogle Scholar
  18. Bright A, Bulson H, Henderson A, Sharpe N, Dorstewitz H, Pickering J (2011) An introduction to the production of biomethane gas and injection to the national gridGoogle Scholar
  19. Brunetti A, Bernardo P, Drioli E, Barbieri G (2010) Membrane engineering: progress and potentialities in gas separations. In: Membrane gas separation. Wiley, Chichester.  https://doi.org/10.1002/9780470665626.ch14 CrossRefGoogle Scholar
  20. Chen XY, Vinh-Thang H, Ramirez AA, Rodrigue D, Kaliaguine S (2015) Membrane gas separation technologies for biogas upgrading. RSC Adv 5(31):24399–24448.  https://doi.org/10.1039/C5RA00666J CrossRefGoogle Scholar
  21. Chen WH, Lin CH, Lin YL, Tsai CW, Chein RY, Ching Tsung Y (2016) Interfacial permeation phenomena of hydrogen purification and carbon dioxide separation in a non-isothermal palladium membrane tube. Chem Eng J 305:156–168.  https://doi.org/10.1016/j.cej.2016.01.036 CrossRefGoogle Scholar
  22. Chiesa P, Campanari S, Manzolini G (2011) CO2 cryogenic separation from combined cycles integrated with molten carbonate fuel cells. Int J Hydrog Energy 36(16):10355–10365.  https://doi.org/10.1016/j.ijhydene.2010.09.068 CrossRefGoogle Scholar
  23. Clift R (2006) Sustainable development and its implications for chemical engineering. Chem Eng Sci 61(13):4179–4187.  https://doi.org/10.1016/j.ces.2005.10.017 CrossRefGoogle Scholar
  24. Coker DT, Allen T, Freeman BD, Fleming GK (1999) Nonisothermal model for gas separation hollow-fiber membranes. AICHE J 45(7):1451–1468.  https://doi.org/10.1002/aic.690450709 CrossRefGoogle Scholar
  25. de Nooijer N, Gallucci F, Pellizzari E, Melendez J, Tanaka DAP, Manzolini G, van Sint Annaland M (2018) On concentration polarisation in a fluidized bed membrane reactor for biogas steam reforming: modelling and experimental validation. Chem Eng J 348:232–243.  https://doi.org/10.1016/j.cej.2018.04.205 CrossRefGoogle Scholar
  26. Deng L, Hägg MB (2010) Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int J Greenh Gas Control 4(4):638–646.  https://doi.org/10.1016/j.ijggc.2009.12.013 CrossRefGoogle Scholar
  27. Djas M, Henczka M (2018) Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: a review. Sep Purif Technol 201:106–119.  https://doi.org/10.1016/j.seppur.2018.02.010 CrossRefGoogle Scholar
  28. Haider S, Lindbråthen A, Hägg M-B (2016) Techno-economical evaluation of membrane based biogas upgrading system: a comparison between polymeric membrane and carbon membrane technology. Green Energy Environ 1(3):222–234.  https://doi.org/10.1016/j.gee.2016.10.003 CrossRefGoogle Scholar
  29. Harasimowicz M, Orluk P, Zakrzewska-Trznadel G, Chmielewski AG (2007) Application of polyimide membranes for biogas purification and enrichment. J Hazard Mater 144(3):698–702.  https://doi.org/10.1016/j.jhazmat.2007.01.098 CrossRefGoogle Scholar
  30. Hasan MMF, Baliban RC, Elia JA, Floudas CA (2012) Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes. Ind Eng Chem Res 51(48):15642–15664.  https://doi.org/10.1021/ie301571d CrossRefGoogle Scholar
  31. Hertel S, Navarro P, Deegener S, Körner I (2015) Biogas and nutrients from blackwater, lawn cuttings and grease trap residues: experiments for Hamburg’s Jenfelder Au District. Energy Sustain Soc 5(1).  https://doi.org/10.1186/s13705-015-0057-5
  32. Hoo PY, Hashim H, Ho WS (2018) Opportunities and challenges: landfill gas to biomethane injection into natural gas distribution grid through pipeline. J Clean Prod 175:409–419.  https://doi.org/10.1016/j.jclepro.2017.11.193 CrossRefGoogle Scholar
  33. Hosseini SE, Wahid MA (2013) Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia. Renew Sust Energ Rev 19:454–462.  https://doi.org/10.1016/j.rser.2012.11.008 CrossRefGoogle Scholar
  34. Ibrahim M, El-Zaart A, Adams C (2018) Smart sustainable cities roadmap: readiness for transformation towards urban sustainability. Sustain Cities Soc 37:530–540.  https://doi.org/10.1016/j.scs.2017.10.008 CrossRefGoogle Scholar
  35. Jiang Z, Xiao T, Kuznetsov VL, Edwards PP (2010) Turning carbon dioxide into fuel. Philos Trans R Soc A Math Phys Eng Sci 368(1923):3343–3364.  https://doi.org/10.1098/rsta.2010.0119 CrossRefGoogle Scholar
  36. Johansson N (2008) Production of liquid biogas, LBG, with cryogenic and conventional upgrading technology – description of systems and evaluations of energy balances. http://lup.lub.lu.se/student-papers/record/4468178/file/4469242.pdf
  37. Kadam R, Panwar NL (2017) Recent advancement in biogas enrichment and its applications. Renew Sust Energ Rev 73:892–903.  https://doi.org/10.1016/j.rser.2017.01.167 CrossRefGoogle Scholar
  38. Kim YJ, Nam YS, Kang YT (2015) Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation from biogas. Energy 91:732–741.  https://doi.org/10.1016/j.energy.2015.08.086 CrossRefGoogle Scholar
  39. Lam CH, Das S, Erickson NC, Hyzer CD, Garedew M, Anderson JE, Wallington TJ, Tamor MA, Jackson JE, Saffron CM (2017) Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustain Energy Fuels 1(2):258–266.  https://doi.org/10.1039/C6SE00080K CrossRefGoogle Scholar
  40. Leonzio G (2016) Upgrading of biogas to bio-methane with chemical absorption process: simulation and environmental impact. J Clean Prod 131:364–375.  https://doi.org/10.1016/j.jclepro.2016.05.020 CrossRefGoogle Scholar
  41. Li D, Wang R, Chung TS (2004) Fabrication of lab-scale hollow fiber membrane modules with high packing density. Sep Purif Technol 40(1):15.  https://doi.org/10.1016/j.seppur.2003.12.019 CrossRefGoogle Scholar
  42. Li S, Falconer JL, Noble RD, Krishna R (2007) Modeling permeation of CO2/CH4, CO2/N2, and N2/CH4 mixtures across SAPO-34 membrane with the Max Well-Stefan equations. Ind Eng Chem Res 46(12):3904–3911.  https://doi.org/10.1021/ie0610703 CrossRefGoogle Scholar
  43. Liang S (2016) Performance modeling and analysis of a hollow fiber membrane system. J Membr Sci Technol 6:1.  https://doi.org/10.4172/2155-9589.1000144 CrossRefGoogle Scholar
  44. Lüdtke O, Behling RD, Ohlrogge K (1998) Concentration polarization in gas permeation. J Membr Sci 146(2):145–157.  https://doi.org/10.1016/S0376-7388(98)00104-5 CrossRefGoogle Scholar
  45. Makaruk A, Miltner M, Harasek M (2010) Membrane biogas upgrading processes for the production of natural gas substitute. Sep Purif Technol 74(1):83–92.  https://doi.org/10.1016/j.seppur.2010.05.010 CrossRefGoogle Scholar
  46. Moghaddam A, Elham SA, Hulteberg C, Nordberg Å (2015) Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Process Technol.  https://doi.org/10.1016/j.fuproc.2014.12.014 CrossRefGoogle Scholar
  47. Mushtaq A, Mukhtar HB, Shariff AM, Mannan HA (2013) A review: development of polymeric blend membrane for removal of CO2 from natural gas. Int J Eng Technol.  https://doi.org/10.1080/0300443730020210
  48. Niesner J, Jecha D, Stehlík P (2013) Biogas upgrading technologies: state of art review in European region. Chem Eng Trans 35:517–522.  https://doi.org/10.3303/CET1335086 CrossRefGoogle Scholar
  49. Patrizio P, Leduc S, Chinese D, Dotzauer E, Kraxner F (2015) Biomethane as transport fuel – a comparison with other biogas utilization pathways in Northern Italy. Appl Energy 157:25–34.  https://doi.org/10.1016/j.apenergy.2015.07.074 CrossRefGoogle Scholar
  50. Paulen R, Fikar M (2016) Membrane processes. In: Advances in industrial control.  https://doi.org/10.1007/978-3-319-20475-8_1 Google Scholar
  51. Peeva LG, Sairam M, Livingston AG (2010) Comprehensive membrane science and engineering. In: Comprehensive membrane science and engineering. Elsevier Science, Oxford.  https://doi.org/10.1016/B978-0-08-093250-7.00020-7 CrossRefGoogle Scholar
  52. Pellegrin M-L, Sadler ME, Greiner AD, Aguinaldo J, Min K, Zhang K, Arabi S, Burbano MS, Kent F, Shoaf R (2015) Membrane processes. Water Environ Res 89(10):1066–1135.  https://doi.org/10.2175/106143015X14338845155345 CrossRefGoogle Scholar
  53. Persson M (2003) Evaluation of upgrading techniques for biogas. Report SGC142Google Scholar
  54. Persson M, Jonsson O, Wellinger A (2007) Biogas upgrading to vehicle fuel standards and grid. IEA Bioenergy:1–32Google Scholar
  55. Pfau SF, Hagens JE, Dankbaar B (2017) Biogas between renewable energy and bio-economy policies—opportunities and constraints resulting from a dual role. Energy Sustain Soc 7(1):1–15.  https://doi.org/10.1186/s13705-017-0120-5 CrossRefGoogle Scholar
  56. Pipatmanomai S, Kaewluan S, Vitidsant T (2009) Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl Energy 86(5):669–674.  https://doi.org/10.1016/j.apenergy.2008.07.007 CrossRefGoogle Scholar
  57. Rahman MA, Møller HB, Saha CK, Alam MM, Wahid R, Feng L (2017) Optimal ratio for anaerobic co-digestion of poultry droppings and lignocellulosic-rich substrates for enhanced biogas production. Energy Sustain Dev 39:59–66.  https://doi.org/10.1016/j.esd.2017.04.004 CrossRefGoogle Scholar
  58. Rasi S, Läntelä J, Rintala J (2011) Trace compounds affecting biogas energy utilisation – a review. Energy Convers Manag 52(12):3369–3375.  https://doi.org/10.1016/j.enconman.2011.07.005 CrossRefGoogle Scholar
  59. Rotunno P, Lanzini A, Leone P (2017) Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel. Renew Energy 102:417–432.  https://doi.org/10.1016/j.renene.2016.10.062 CrossRefGoogle Scholar
  60. Rowe BW, Robeson LM, Freeman BD, Paul DR (2010) Influence of temperature on the upper bound: theoretical considerations and comparison with experimental results. J Membr Sci 360:58–69.  https://doi.org/10.1016/j.memsci.2010.04.047 CrossRefGoogle Scholar
  61. Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5):1633–1645.  https://doi.org/10.1016/j.biombioe.2011.02.033 CrossRefGoogle Scholar
  62. Sanna A, Vega F, Navarrete B, Mercedes Maroto-Valer M (2014) Accelerated MEA degradation study in hybrid CO2 capture systems. Energy Proc 63:745–749.  https://doi.org/10.1016/j.egypro.2014.11.082 CrossRefGoogle Scholar
  63. Scholz M, Frank B, Stockmeier F, Falß S, Wessling M (2013a) Techno-economic analysis of hybrid processes for biogas upgrading. Ind Eng Chem Res 52(47):16929–16938.  https://doi.org/10.1021/ie402660s CrossRefGoogle Scholar
  64. Scholz M, Melin T, Wessling M (2013b) Transforming biogas into biomethane using membrane technology. Renew Sust Energ Rev 17:199–212.  https://doi.org/10.1016/j.rser.2012.08.009 CrossRefGoogle Scholar
  65. Scripps Institution of Oceanography (2018) The keeling curve. UC San Diego. https://scripps.ucsd.edu/programs/keelingcurve/
  66. Shao P, Huang RYM (2006) An analytical approach to the gas pressure drop in hollow fiber membranes. J Membr Sci 271(1–2):69–76.  https://doi.org/10.1016/j.memsci.2005.06.058 CrossRefGoogle Scholar
  67. Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sust Energ Rev 51:521–532.  https://doi.org/10.1016/j.rser.2015.06.029 CrossRefGoogle Scholar
  68. Tuinier MJ, Van Sint Annaland M (2012) Biogas purification using cryogenic packed-bed technology. Ind Eng Chem Res 51(15):5552–5558.  https://doi.org/10.1021/ie202606g CrossRefGoogle Scholar
  69. Ullah Khan I, Hafiz Dzarfan Othman M, Hashim H, Matsuura T, Ismail AF, Rezaei-DashtArzhandi M, Wan Azelee I (2017) Biogas as a renewable energy fuel – a review of biogas upgrading, utilisation and storage. Energy Convers Manag 150:277–294.  https://doi.org/10.1016/j.enconman.2017.08.035 CrossRefGoogle Scholar
  70. Vega F, Cano M, Gallego M, Camino S, Camino JA, Navarrete B (2017) Evaluation of MEA 5 M performance at different CO2 concentrations of flue gas tested at a CO2 capture lab-scale plant. Energy Procedia 114(114):6222–6228.  https://doi.org/10.1016/j.egypro.2017.03.1760 CrossRefGoogle Scholar
  71. Verotti M, Servadio P, Bergonzoli S (2016) Biogas upgrading and utilization from ICEs towards stationary molten carbonate fuel cell systems. Int J Green Energy 13(7):655–664.  https://doi.org/10.1080/15435075.2015.1018992 CrossRefGoogle Scholar
  72. Weiland P (2009) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860.  https://doi.org/10.1007/s00253-009-2246-7 CrossRefGoogle Scholar
  73. Wheeler P, Holm-Nielsen JB, Jaatinen T, Wellinger A, Lindberg A, Pettigrew A (1999) Biogas upgrading and utilisation. IEA Bioenergy:3–20. http://www.energietech.info/pdfs/Biogas_upgrading.pdf
  74. Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques – a review. Bioresour Technol 95(1):1–10.  https://doi.org/10.1016/j.biortech.2004.02.010 CrossRefGoogle Scholar
  75. Yang L, Ge X, Wan C, Yu F, Li Y (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sust Energ Rev 40:1133–1152.  https://doi.org/10.1016/j.rser.2014.08.008 CrossRefGoogle Scholar
  76. Yin F, Li Z, Zhou X, Bai X, Lian J (2016) Effects of temperature and relative humidity on the methane permeability rate of biogas storage membranes. Int J Green Energy 13(9):951–956.  https://doi.org/10.1080/15435075.2015.1088446 CrossRefGoogle Scholar
  77. Yoon SH, Lee S, Yeom IT (2008) Experimental verification of pressure drop models in hollow fiber membrane. J Membr Sci 310(1–2):7–12.  https://doi.org/10.1016/j.memsci.2007.11.048 CrossRefGoogle Scholar
  78. Zeman LJ, Zydney AL (2017) Microfiltration and ultrafiltration: principles and applications. Taylor and Francis, London.  https://doi.org/10.1201/9780203747223 CrossRefGoogle Scholar
  79. Zhang Z, Yan Y, Zhang L, Chen Y, Ju S (2014) CFD investigation of CO2 capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. J Nat Gas Sci Eng 19:311–316.  https://doi.org/10.1016/j.jngse.2014.05.023 CrossRefGoogle Scholar
  80. Zhao L, Riensche E, Blum L, Stolten D (2010) Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses. J Membr Sci 359:160–172.  https://doi.org/10.1016/j.memsci.2010.02.003 CrossRefGoogle Scholar
  81. Zhou K, Chaemchuen S, Verpoort F (2017) Alternative materials in technologies for biogas upgrading via CO2 capture. Renew Sust Energ Rev 79:1414–1441.  https://doi.org/10.1016/J.RSER.2017.05.198 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Francisco M. Baena-Moreno
    • 1
    • 2
    Email author
  • Estelle le Saché
    • 2
  • Laura Pastor-Pérez
    • 2
  • T. R. Reina
    • 2
  1. 1.Chemical and Environmental Engineering Department, Technical School of EngineeringUniversity of SevilleSevillaSpain
  2. 2.Department of Chemical and Process EngineeringUniversity of SurreyGuildfordUK

Personalised recommendations