Advertisement

Carbon Capture via Mixed-Matrix Membranes Containing Nanomaterials and Metal–Organic Frameworks

  • Muhammad SarfrazEmail author
Chapter
  • 47 Downloads
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 42)

Abstract

Global warming issues arise due to the emission of carbon dioxide gas into the atmosphere. Carbon dioxide concentration in the environment has appreciably increased due to burning of carbon-based fossil fuels which releases large quantities of greenhouse gas into the atmosphere. Global warming can be controlled by minimizing greenhouse gas emissions into the atmosphere by capturing carbon dioxide from current effluent sources by applying carbon capture and sequestration technology. Carbon dioxide can be readily captured from post-combustion flue gas using mixed-matrix membranes filled with various nanofillers. This chapter comprehensively discusses recent developments made in the field of carbon capture from post-combustion flue gas using polymer-based mixed-matrix membranes containing different microporous metal–organic frameworks and other nanomaterials to signify their prospective application on an industrial scale. A comparison of membrane separation technology with conventional processes in terms of carbon capture performance is made here. Carbon capture performance of various mixed-matrix membranes prepared from different polymer matrices and selected microporous nanofillers is reviewed in terms of CO2 permeability and CO2/N2 selectivity. Notable polymer matrices used to prepare mixed-matrix membranes include polysulfone, polyimide, polydimethylsiloxane, Matrimid®, Ultrason®, Pebax, SPEEK, and Ultem®. Currently investigated prominent nanomaterials comprise carbon nanotubes, graphene oxide nanosheets, and silica, while noteworthy microporous metal–organic frameworks encompass HKUST-1, ZIF-7, ZIF-8, ZIF-300, ZIF-301, ZIF-302, MIL-53, and MIL-101. Nanomaterial-filled membranes offer superior carbon dioxide separation performance as compared to their respective pure polymer counterparts and higher selectivities than the associated pure metal–organic framework membranes. Main advantages of these membranes include easy processability, casting and handling, improved mechanical and chemical properties, and superior gas separation performances.

Keywords

Global warming CO2 capture Post-combustion Mixed-matrix membranes Polymer Metal–organic frameworks Zeolitic imidazolate frameworks Permeability Selectivity Porous materials 

References

  1. Adams R, Carson C, Ward J, Tannenbaum R, Koros W (2010) Metal organic framework mixed matrix membranes for gas separations. Microporous Mesoporous Mater 131:13–20.  https://doi.org/10.1016/j.micromeso.2009.11.035 CrossRefGoogle Scholar
  2. Ahmad AL, Salaudeen YO, Jawad ZA (2017) Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation. IOP Conf Ser: Mater Sci Eng 206:012068.  https://doi.org/10.1088/1757-899X/206/1/012068 CrossRefGoogle Scholar
  3. Ahn J, Chung W-J, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Membr Sci 314:123–133.  https://doi.org/10.1016/j.memsci.2008.01.031 CrossRefGoogle Scholar
  4. Allen CA, Boissonnault JA, Cirera J, Gulland R, Paesani F, Cohen SM (2013) Chemically crosslinked isoreticular metal-organic frameworks. Chem Commun 49:3200–3202.  https://doi.org/10.1039/C3CC40635K CrossRefGoogle Scholar
  5. Ataeivarjovi E, Tang Z, Chen J (2018) Study on CO2 desorption behavior of a PDMS-SiO2 hybrid membrane applied in a novel CO2 capture process. ACS Appl Mater Interfaces 10:28992–29002.  https://doi.org/10.1021/acsami.8b08630 CrossRefGoogle Scholar
  6. Bae TH, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S (2010) A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew Chem Int Ed Engl 49:9863–9866.  https://doi.org/10.1002/anie.201006141 CrossRefGoogle Scholar
  7. Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411.  https://doi.org/10.1021/ie0108088 CrossRefGoogle Scholar
  8. Barooah M, Mandal B (2018) Enhanced CO2 separation performance by PVA/PEG/silica mixed matrix membrane. J Appl Polym Sci 135:46481–46483.  https://doi.org/10.1002/app.46481 CrossRefGoogle Scholar
  9. Basu S, Khan AL, Odena AC, Liu C, Vankelecom IFJ (2010a) Membrane-based technologies for biogas separations. Chem Soc Rev 39:750–768.  https://doi.org/10.1039/b817050a CrossRefGoogle Scholar
  10. Basu S, Odena AC, Vankelecom IFJ (2010b) Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations. J Membr Sci 362:478–487.  https://doi.org/10.1016/j.memsci.2010.07.005 CrossRefGoogle Scholar
  11. Basu S, Odena AC, Vankelecom IFJ (2011) MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Sep Purif Technol 81:31–40.  https://doi.org/10.1016/j.seppur.2011.06.037 CrossRefGoogle Scholar
  12. Benavides ME, David O, Johnson T, Łozińska MM, Orsic A, Wright PA, Mastel S, Hillenbrand R, Kapteijn F, Gascon J (2018) High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J Membr Sci 550:198–207.  https://doi.org/10.1016/j.memsci.2017.12.033 CrossRefGoogle Scholar
  13. Benemann JR (1993) Utilization of carbon dioxide from fossil fuel-burning power plants with biological systems. Energy Convers Manag 34:999–1004.  https://doi.org/10.1016/0196-8904(93)90047-E CrossRefGoogle Scholar
  14. Burgaz E, Erciyes A, Andac M, Andac O (2019) Synthesis and characterization of nano-sized metal organic framework-5 (MOF-5) by using consecutive combination of ultrasound and microwave irradiation methods. Inorg Chim Acta 485:118–124.  https://doi.org/10.1016/j.ica.2018.10.014 CrossRefGoogle Scholar
  15. Caro J, Noack M (2008) Zeolite membranes – recent developments and progress. Microporous Mesoporous Mater 115:215–233.  https://doi.org/10.1016/j.micromeso.2008.03.008 CrossRefGoogle Scholar
  16. Choi S, Drese JH, Jones CW (2010) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2:796–854.  https://doi.org/10.1002/cssc.200900036 CrossRefGoogle Scholar
  17. Cheetham AK, Al-Muhtaseb SA, Sivaniah E (2012) Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ Sci 5:8359–8369.  https://doi.org/10.1039/C2EE21996D CrossRefGoogle Scholar
  18. Chui SS, Lo SM, Charmant JPH, Orpen AG, Williams ID (2007) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150.  https://doi.org/10.1126/science.283.5405.1148 CrossRefGoogle Scholar
  19. Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507.  https://doi.org/10.1016/j.progpolymsci.2007.01.008 CrossRefGoogle Scholar
  20. Dai Z, Løining V, Deng J, Ansaloni L, Deng L (2018) Poly(1-trimethylsilyl-1-propyne)-based hybrid membranes: effects of various nanofillers and feed gas humidity on CO2 permeation. Membranes 8:76.  https://doi.org/10.3390/membranes8030076 CrossRefGoogle Scholar
  21. Das AK, Vemuri RS, Kutnyakov I, McGrail BP, Motkuria RK (2016) An efficient synthesis strategy for metal-organic frameworks: dry-gel synthesis of MOF-74 framework with high yield and improved performance. Sci Rep 6:28050–28057.  https://doi.org/10.1038/srep28050 CrossRefGoogle Scholar
  22. Daturi M, Chang JS (2011) Why hybrid porous solids capture greenhouse gases? Chem Soc Rev 40(2):550-562.  https://doi.org/10.1039/c0cs00040j CrossRefGoogle Scholar
  23. David H, Wagener V, Rochelle GT (2011) Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine. Energy Procedia 4:1323–1330.  https://doi.org/10.1016/j.egypro.2011.01.190 CrossRefGoogle Scholar
  24. Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R (2014) Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Cryst 70:3–10.  https://doi.org/10.1107/S2052520613029557 CrossRefGoogle Scholar
  25. ESRL (2019) Trends in atmospheric carbon dioxide. Earth System Research Laboratory, Global Monitoring Division, 2019Google Scholar
  26. Ferey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn PL, De Weireld G, Vimont A, Daturi M, Chang JS (2011) Why hybrid porous solids capture greenhouse gases? Chem Soc Rev 40(2):550–562.  https://doi.org/10.1039/c0cs00040j CrossRefGoogle Scholar
  27. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444–1230456.  https://doi.org/10.1126/science.1230444 CrossRefGoogle Scholar
  28. Galve A, Sieffert D, Vispe E, Tellez C, Coronas J, Staudt C (2011) Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. J Membr Sci 370:131–140.  https://doi.org/10.1016/j.memsci.2011.01.011 CrossRefGoogle Scholar
  29. Gao Y, Qiao Z, Zhao S, Wang Z, Wang J (2018) In situ synthesis of polymer grafted ZIFs and application in mixed matrix membrane for CO2 separation. J Mater Chem A 6:3151–3161.  https://doi.org/10.1039/C7TA10322K CrossRefGoogle Scholar
  30. Gascon J, Aktay U, Alonso MDH, van Klink GPM, Kapteijn F (2009) Amino-based metal-organic frameworks as stable, highly active basic catalysts. J Catal 261:75–87.  https://doi.org/10.1016/j.jcat.2008.11.010 CrossRefGoogle Scholar
  31. Gascon J, Kapteijn F, Zornoza B, Sebastian V, Casado C, Coronas J (2012) Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chem Mater 24:2829–2844.  https://doi.org/10.1021/cm301435j CrossRefGoogle Scholar
  32. Ge BS, Wang T, Sun HX, Gao W, Zhao HR (2018) Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO2 separation. Polym Adv Technol 29:1334–1343.  https://doi.org/10.1002/pat.4245 CrossRefGoogle Scholar
  33. Girault F, Adhikari LB, Lanord CF, Agrinier P, Koirala BP, Bhattarai M, Mahat SS, Groppo C, Rolfo F, Bollinger L, Perrier F (2018) Persistent CO2 emissions and hydrothermal unrest following the 2015 earthquake in Nepal. Nat Commun 9:2956–2965.  https://doi.org/10.1038/s41467-018-05138-z CrossRefGoogle Scholar
  34. Gong X, Wnag Y, Kuang T (2017) ZIF-8-based membranes for carbon dioxide capture and separation. ACS Sustain Chem Eng 5:11204–11214.  https://doi.org/10.1021/acssuschemeng.7b03613 CrossRefGoogle Scholar
  35. Guerrero G, Hägg MB, Simon C, Peters T, Rival N, Denonville C (2018) CO2 separation in nanocomposite membranes by the addition of amidine and lactamide functionalized POSS® nanoparticles into a PVA layer. Membranes 8:28.  https://doi.org/10.3390/membranes8020028 CrossRefGoogle Scholar
  36. Guo HL, Zhu GS, Hewitt IJ, Qiu SL (2009) “Twin copper source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J Am Chem Soc 131:1646–1647.  https://doi.org/10.1021/ja8074874 CrossRefGoogle Scholar
  37. Guo X, Huang H, Ban Y, Yang Q, Xiao Y, Li Y, Yang W, Zhong C (2015) Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation. J Membr Sci 478:130–139.  https://doi.org/10.1016/j.memsci.2015.01.007 CrossRefGoogle Scholar
  38. Hassanpoor A, Mirzaei M, Eshtiagh-Hosseini H (2018) Syntheses and characterization of two new coordination compounds containing an azide ligand in the presence of o-donor co-ligands with nickel and copper(II) metal ions and an investigation into the effects of sonochemical methods on morphology and particle size. J Iran Chem Soc 15:1287–1292.  https://doi.org/10.1007/s13738-018-1327-x CrossRefGoogle Scholar
  39. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652.  https://doi.org/10.1126/science.1172246 CrossRefGoogle Scholar
  40. Hedin N, Chen L, Laaksonen A (2010) Sorbents for CO2 capture from flue gas- aspects from materials and theoretical chemistry. Nanoscale 2:1819–1841.  https://doi.org/10.1039/C0NR00042F CrossRefGoogle Scholar
  41. Hu J, Cai H, Ren H, Wei YM, Xu Z, Liu H, Hu Y (2010) Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption. Ind Eng Chem Res 49:12605–12612.  https://doi.org/10.1021/ie1014958 CrossRefGoogle Scholar
  42. Ismail AF, David L (2001) A review on the latest development of carbon membranes for gas separation. J Membr Sci 193:1–18.  https://doi.org/10.1016/S0376-7388(01)00510-5 CrossRefGoogle Scholar
  43. Ismail AF, Kusworo TD, Mustafa A (2008) Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. J Membr Sci 319:306–312.  https://doi.org/10.1016/j.memsci.2008.03.067 CrossRefGoogle Scholar
  44. Jeazet HT, Staudt C, Janiak C (2012) Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans 41:14003–14027.  https://doi.org/10.1039/C2DT31550E CrossRefGoogle Scholar
  45. Keskin S, Sholl DS (2010) Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification. Energy Environ Sci 3:343–351.  https://doi.org/10.1039/B923980B CrossRefGoogle Scholar
  46. Keskin S, Liu J, Johnson JK, Sholl DS (2009) Atomically detailed models of gas mixture diffusion through CuBTC membranes. Microporous Mesoporous Mater 125:101–106.  https://doi.org/10.1016/j.micromeso.2009.01.016 CrossRefGoogle Scholar
  47. Keskin S, van Heest TM, Sholl DS (2010) Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3(8):879–891.  https://doi.org/10.1002/cssc.201000114 CrossRefGoogle Scholar
  48. Khalilinejad I, Kargari A, Sanaeepur H (2017) Preparation and characterization of (Pebax 1657 + silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chem Pap 71:803–818.  https://doi.org/10.1007/s11696-016-0084-5 CrossRefGoogle Scholar
  49. Kim S, Chen L, Johnson JK, Marand E (2007) Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. J Membr Sci 294:147–158.  https://doi.org/10.1016/j.memsci.2007.02.028 CrossRefGoogle Scholar
  50. Kitagawa S, Matsuda R (2007) Chemistry of coordination space of porous coordination polymers. Coord Chem Rev 251:2490–2509.  https://doi.org/10.1016/j.ccr.2007.07.009 CrossRefGoogle Scholar
  51. Klimakow M, Klobes P, Thünemann AF, Rademann K, Emmerling F (2010) Mechanochemical synthesis of metal−organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem Mater 22:5216–5221.  https://doi.org/10.1021/cm1012119 CrossRefGoogle Scholar
  52. Klinowski J, Paz FAA, Silva P, Rocha J (2011) Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans 40:321–330.  https://doi.org/10.1039/C0DT00708K CrossRefGoogle Scholar
  53. Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175:181–196.  https://doi.org/10.1016/S0376-7388(00)00418-X CrossRefGoogle Scholar
  54. Kumar B, Smieja JM, Kubiak CP (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: Photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem C 114:14220–14223.  https://doi.org/10.1021/jp105171b CrossRefGoogle Scholar
  55. Kwak KO, Jung SJ, Chung SY, Kang CM, Huh YI, Bae SO (2006) Optimization of culture conditions for CO2 fixation by a chemoautotrophic microorganism, strain YN-1 using factorial design. Biochem Eng J 31:1–7.  https://doi.org/10.1016/j.bej.2006.05.001 CrossRefGoogle Scholar
  56. Li M, Dinca M (2011) Reductive electrosynthesis of crystalline metal-organic frameworks. J Am Chem Soc 133:12926–12929.  https://doi.org/10.1021/ja2041546 CrossRefGoogle Scholar
  57. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504.  https://doi.org/10.1039/b802426j CrossRefGoogle Scholar
  58. Li X, Sun Q, Liu J, Xiao B, Li R, Sun X (2016) Tunable porous structure of metal organic framework derived carbon and the application in lithium-sulfur batteries. J Power Sources 302:174–179.  https://doi.org/10.1016/j.jpowsour.2015.10.049 CrossRefGoogle Scholar
  59. Lin R, Ge L, Diao H, Rudolph V, Zhu Z (2016) Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation. ACS Appl Mater Interfaces 8:32041–32049.  https://doi.org/10.1021/acsami.6b11074 CrossRefGoogle Scholar
  60. Liu L, Chakma A, Feng X (2005) CO2/N2 separation by poly(ether block amide) thin film hollow fiber composite membranes. Ind Eng Chem Res 44:6874–6882.  https://doi.org/10.1021/ie050306k CrossRefGoogle Scholar
  61. Mahajan R, Koros WJ (2000) Factors controlling successful formation of mixed-matrix gas separation materials. Ind Eng Chem Res 39:2692–2696.  https://doi.org/10.1021/ie990799r CrossRefGoogle Scholar
  62. Maji TK, Kitagawa S (2007) Chemistry of porous coordination polymers. Pure Appl Chem 79:2155–2177.  https://doi.org/10.1351/pac200779122155 CrossRefGoogle Scholar
  63. McCarthy MC, Guerrero VV, Barnett GV, Jeong HK (2010) Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir 26:14636–14641.  https://doi.org/10.1021/la102409e CrossRefGoogle Scholar
  64. Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, pp 1–431Google Scholar
  65. Mirzaei S, Shamiri A, Aroua MK (2015) A review of different solvents, mass transfer, and hydrodynamics for postcombustion CO2 capture. Int J Eng Res 3:742–744.  https://doi.org/10.1515/revce-2014-0045 CrossRefGoogle Scholar
  66. Nafisi V, Hägg MB (2014) Gas separation properties of ZIF-8/6FDA-durene diamine mixed matrix membrane. Sep & Purif Technol 128:31–38.  https://doi.org/10.1016/j.seppur.2014.03.006 CrossRefGoogle Scholar
  67. Noble RD (2011) Perspectives on mixed matrix membranes. J Membr Sci 378:393–397.  https://doi.org/10.1016/j.memsci.2011.05.031 CrossRefGoogle Scholar
  68. Ockwig NW, Nenoff TM (2007) Membranes for hydrogen separation. Chem Rev 107:4078–4110.  https://doi.org/10.1021/cr0501792 CrossRefGoogle Scholar
  69. Ohlrogge K, Stürken K (2001) The separation of organic vapors from gas streams by means of membranes. In: Membrane technology: in the chemical industry. Wiley, Weinheim.  https://doi.org/10.1002/3527600388.ch7. Ch II-1CrossRefGoogle Scholar
  70. Oral CA (2018) Gas permeability of polydimethylsiloxane membranes filled with clinoptilolite in different cationic forms. Turk J Chem 42:112–120.  https://doi.org/10.3906/kim-1707-8 CrossRefGoogle Scholar
  71. Pachauri RK, Reisinger A (2007) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. In: IPCC climate change 2007: synthesis report, pp 1–104Google Scholar
  72. Pal R (2008) Permeation models for mixed matrix membranes. J Colloid Interface Sci 317:191–198.  https://doi.org/10.1016/j.jcis.2007.09.032 CrossRefGoogle Scholar
  73. Prasetya N, Teck AA, Ladewig BP (2018) Matrimid-JUC-62 and Matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for CO2/N2 separation. Sci Rep 8:2944.  https://doi.org/10.1038/s41598-018-21263-7 CrossRefGoogle Scholar
  74. Quadrelli R, Peterson S (2007) The energy-climate challenge: recent trends in CO2 emissions from fuel combustion. Energy Policy 35:5938–5952.  https://doi.org/10.1016/j.enpol.2007.07.001 CrossRefGoogle Scholar
  75. Ranjan R, Tsapatsis M (2009) Microporous metal organic framework membrane on porous support using the seeded growth method. Chem Mater 21:4920–4924.  https://doi.org/10.1021/cm902032y CrossRefGoogle Scholar
  76. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400.  https://doi.org/10.1016/j.memsci.2008.04.030 CrossRefGoogle Scholar
  77. Russo G, Prpich G, Anthony EJ, Montagnaro F, Jurado N, Lorenzo GD, Darabkhani HG (2017) Selective-exhaust gas recirculation for CO2 capture using membrane technology. J Membr Sci 549:649–659.  https://doi.org/10.1016/j.memsci.2017.10.052 CrossRefGoogle Scholar
  78. Sabetghadam A, Seoane B, Keskin D, Duim N, Rodenas T, Shahid S, Sorribas S (2016) Metal organic framework crystals in mixed-matrix membranes: impact of the filler morphology on the gas separation performance. Adv Funct Mater 26:3154–3163.  https://doi.org/10.1002/adfm.201505352 CrossRefGoogle Scholar
  79. Sadrzadeh M, Shahidi K, Mohammadi T (2010) Synthesis and gas permeation properties of a single layer PDMS membrane. J Appl Polym Sci 117:33–48.  https://doi.org/10.1002/app.31180 CrossRefGoogle Scholar
  80. Saracco G, Neomagus HWJP, Versteeg GF, van Swaaij WPM (1999) High-temperature membrane reactors: potential and problems. Chem Eng Sci 54:1997–2017.  https://doi.org/10.1016/S0009-2509(99)00009-3 CrossRefGoogle Scholar
  81. Sarfraz M, Ba-Shammakh M (2016a) A novel zeolitic imidazolate framework based mixed-matrix membrane for efficient CO2 separation under wet conditions. J Taiwan Inst Chem Eng 65:427–436.  https://doi.org/10.1016/j.jtice.2016.04.033 CrossRefGoogle Scholar
  82. Sarfraz M, Ba-Shammakh M (2016b) Combined effect of CNTs with ZIF-302 into polysulfone to fabricate MMMs for enhanced CO2 separation from flue gases. Arab J Sci Eng 41:2573–2582.  https://doi.org/10.1007/s13369-016-2096-4 CrossRefGoogle Scholar
  83. Sarfraz M, Ba-Shammakh M (2016c) Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas. J Membr Sci 514:35–43.  https://doi.org/10.1016/j.memsci.2016.04.029 CrossRefGoogle Scholar
  84. Sarfraz M, Ba-Shammakh M (2016d) Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases. J Ind Eng Chem 36:154–162.  https://doi.org/10.1016/j.jiec.2016.01.032 CrossRefGoogle Scholar
  85. Sarfraz M, Ba-Shammakh M (2018a) Water-stable ZIF-300/Ultrason® mixed-matrix membranes for selective CO2 capture from humid post combustion flue gas. Chin J Chem Eng 26:1012–1021.  https://doi.org/10.1016/j.cjche.2017.11.007 CrossRefGoogle Scholar
  86. Sarfraz M, Ba-Shammakh M (2018b) ZIF-based water-stable mixed-matrix membranes for effective CO2 separation from humid flue gas. Can J Chem Eng 96:2475–2483.  https://doi.org/10.1002/cjce.23170 CrossRefGoogle Scholar
  87. Sarfraz M, Ba-Shammakh M (2018c) Harmonious interaction of incorporating CNTs and zeolitic imidazole frameworks into polysulfone to prepare high performance MMMs for CO2 separation from humidified post combustion gases. Braz J Chem Eng 35:217–228.  https://doi.org/10.1590/0104-6632.20180351s20150595 CrossRefGoogle Scholar
  88. Sarfraz M, Ba-Shammakh M (2018d) Pursuit of efficient CO2-capture membranes: graphene oxide- and MOF-integrated Ultrason® membranes. Polym Bull 75:5039–5059.  https://doi.org/10.1007/s00289-018-2301-6 CrossRefGoogle Scholar
  89. Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W (2016) UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J Membr Sci 513:155–165.  https://doi.org/10.1016/j.memsci.2016.04.045 CrossRefGoogle Scholar
  90. Silva EA, Windmoller D, Silva GG, Figueiredo KCS (2017) Polydimethylsiloxane membranes containing multi-walled carbon nanotubes for gas separation. Mater Res 20:1454–1460.  https://doi.org/10.1590/1980-5373-MR-2016-0825 CrossRefGoogle Scholar
  91. Smart S, Lin CXC, Ding L, Thambimuthu K, da Costa JCD (2010) Ceramic membranes for gas processing in coal gasification. Energy Environ Sci 3:268–278.  https://doi.org/10.1039/B924327E CrossRefGoogle Scholar
  92. Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem Eng.  https://doi.org/10.1016/j.cjche.2018.03.012 CrossRefGoogle Scholar
  93. Song Q, Nataraj SK, Roussenova MV, Tan JC, Hughes DJ, Li W, Bourgoin P, Alam MA, Cheetham AK, Al-Muhtaseb SA, Sivaniah E (2012) Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ Sci 5:8359–8369.  https://doi.org/10.1039/C2EE21996D CrossRefGoogle Scholar
  94. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969.  https://doi.org/10.1021/cr200304e CrossRefGoogle Scholar
  95. Strathmann H (2012) Introduction to membrane science and technology. Wiley-VCH. Ch 3, p 114.  https://doi.org/10.1002/anie.201205786 CrossRefGoogle Scholar
  96. Suleman MS, Lau KK, Yeong YF (2016) Development and performance evaluation of polydimethyl siloxane/polysulfone (PDMS/PSF) composite membrane for CO2/CH4 separation. IOP Conf Ser: Earth Environ Sci 36:012014.  https://doi.org/10.1088/1755-1315/36/1/012014 CrossRefGoogle Scholar
  97. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781.  https://doi.org/10.1021/cr2003272 CrossRefGoogle Scholar
  98. Sun J, Yi Z, Zhao X, Zhou Y, Gao C (2017) CO2 separation membranes with high permeability and CO2/N2 selectivity prepared by electrostatic self-assembly of polyethylenimine on reverse osmosis membranes. RSC Adv 7:14678–14687.  https://doi.org/10.1039/c7ra00094d CrossRefGoogle Scholar
  99. Thompson JA, Chapman KW, Koros WJ, Jones CW, Nair S (2012) Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous Mesoporous Mater 158:292–299.  https://doi.org/10.1016/j.micromeso.2012.03.052 CrossRefGoogle Scholar
  100. Venna SR, Carreon MA (2010) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132:76–78.  https://doi.org/10.1021/ja909263x CrossRefGoogle Scholar
  101. Vu DQ, Koros WJ, Miller SJ (2003) Mixed matrix membranes using carbon molecular sieves. J Membr Sci 211:335–348.  https://doi.org/10.1016/S0376-7388(02)00429-5 CrossRefGoogle Scholar
  102. Wang ZQ, Cohen SM (2009) Postsynthetic modification of metal-organic frameworks. Chem Soc Rev 38:1315–1329.  https://doi.org/10.1039/b802258p CrossRefGoogle Scholar
  103. Wappel D, Gronald G, Kalb R, Draxler J (2010) Ionic liquids for post-combustion CO2 absorption. Int J Greenhouse Gas Control 4:486–494.  https://doi.org/10.1016/j.ijggc.2009.11.012 CrossRefGoogle Scholar
  104. Wijenayake SN, Panapitiya NP, Versteeg SH, Nguyen CN, Goel S, Balkus KJ Jr, Musselman IH, Ferraris JP (2013) Surface cross-linking of ZIF-8/polyimide mixed matrix membranes (MMMs) for gas separation. Ind Eng Chem Res 52:6991–7001.  https://doi.org/10.1021/ie400149e CrossRefGoogle Scholar
  105. Wu X, Yuan B, Bao Z, Deng S (2014) Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework. J Colloid Interface Sci 430:78–84.  https://doi.org/10.1016/j.jcis.2014.05.021 CrossRefGoogle Scholar
  106. Xin Q, Ouyang J, Liu T, Li Z, Li Z, Liu Y, Wang S, Wu H, Jiang Z, Cao X (2015) Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks. ACS Appl Mater Interfaces 7:1065–1077.  https://doi.org/10.1021/am504742q CrossRefGoogle Scholar
  107. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new material. Nature 423:705–714.  https://doi.org/10.1038/nature01650 CrossRefGoogle Scholar
  108. Yoo Y, Lai Z, Jeong HK (2009) Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater 123:100–106.  https://doi.org/10.1016/j.micromeso.2009.03.036 CrossRefGoogle Scholar
  109. You H, Hossain I, Kim TH (2018) Piperazinium-mediated crosslinked polyimide-polydimethylsiloxane (PI-PDMS) copolymer membranes: the effect of PDMS content on CO2 separation. RSC Adv 8:1328–1336.  https://doi.org/10.1039/c7ra10949k CrossRefGoogle Scholar
  110. Yuan D, Zhao D, Sun D, Zhou HC (2010) An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49:5357–5361.  https://doi.org/10.1002/anie.201001009 CrossRefGoogle Scholar
  111. Zhao D, Yuan DQ, Sun DF, Zhou HC (2009) Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. J Am Chem Soc 131:9186–9188.  https://doi.org/10.1021/ja901109t CrossRefGoogle Scholar
  112. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674.  https://doi.org/10.1021/cr300014x CrossRefGoogle Scholar
  113. Zhu H, Jie X, Cao Y (2017) Fabrication of functionalized MOFs incorporated mixed matrix hollow fiber membrane for gas separation. J Chem 2017:1–9.  https://doi.org/10.1155/2017/2548957 CrossRefGoogle Scholar
  114. Zimmerman CM, Singh A, Koros WJ (1997) Tailoring mixed matrix composite membranes for gas separations. J Membr Sci 137:145–154.  https://doi.org/10.1016/S0376-7388(97)00194-4 CrossRefGoogle Scholar
  115. Zornoza B, Irusta S, Tellez C, Coronas J (2009) Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. Langmuir 25:5903–5909.  https://doi.org/10.1021/la900656z CrossRefGoogle Scholar
  116. Zornoza B, Seoane B, Zamaro JM, Téllez C, Coronas J (2011a) Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem 12:2781–2785.  https://doi.org/10.1002/cphc.201100583 CrossRefGoogle Scholar
  117. Zornoza B, Esekhile O, Koros WJ, Tellez C, Coronas J (2011b) Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation. Sep Purif Technol 77:137–145.  https://doi.org/10.1016/j.seppur.2010.11.033 CrossRefGoogle Scholar
  118. Zornoza B, Tellez C, Coronas J, Gascon J, Kapteijn F (2013) Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential. Microporous Mesoporous Mater 166:67–78.  https://doi.org/10.1016/j.micromeso.2012.03.012 CrossRefGoogle Scholar
  119. Zou X, Zhang F, Thomas S, Zhu G, Valtchev V, Mintova S (2011) Co3(HCOO)6 microporous metal-organic framework membrane for separation of CO2/CH4 mixtures. Chem-Eur J 17:12076–12083.  https://doi.org/10.1002/chem.201101733 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Polymer and Process EngineeringUniversity of Engineering and TechnologyLahorePakistan

Personalised recommendations