Scilab Based Toolbox for Fractional-order Chaotic Systems

  • Kishore BingiEmail author
  • Rosdiazli Ibrahim
  • Mohd Noh Karsiti
  • Sabo Miya Hassan
  • Vivekananda Rajah Harindran
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 264)


In this chapter, a Scilab based toolbox has been developed for fractional-order chaotic systems. The systems include fractional-order Van der Pol and duffing oscillators and fractional-order Lorenz, Chen and Rössler’s systems. The dynamic behavior of these systems has been analyzed for various commensurate and non-commensurate orders using Scilab. In all these cases, the numerical solution has been obtained using Grünwald-Letnikov’s definition for fractional-order derivative.


  1. 1.
    Zhang, W., Liao, S.K., Shimizu, N.: Dynamic behaviors of nonlinear fractional-order differential oscillator. J. Mech. Sci. Technol. 23(4), 1058–1064 (2009)CrossRefGoogle Scholar
  2. 2.
    Elwakil, A.S.: Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)CrossRefGoogle Scholar
  3. 3.
    Ge, Z.M., Ou, C.Y.: Chaos in a fractional order modified Duffing system. Chaos Solitons Fractals 34(2), 262–291 (2007)CrossRefGoogle Scholar
  4. 4.
    Shen, Y., Yang, S., Xing, H., Gao, G.: Primary resonance of Duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3092–3100 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baleanu, D., Machado, J.A.T., Luo, A.C.: Fractional Dynamics and Control. Springer Science & Business Media (2011)Google Scholar
  6. 6.
    Shen, Y., Yang, S., Sui, C.: Analysis on limit cycle of fractional-order van der Pol oscillator. Chaos Solitons Fractals 67, 94–102 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Matouk, A.E.: Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit. Commun. Nonlinear Sci. Numer. Simul. 16(2), 975–986 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tavazoei, M.S., Haeri, M., Attari, M., Bolouki, S., Siami, M.: More details on analysis of fractional-order van der Pol oscillator. J. Vib. Control 15(6), 803–819 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91(3), 034101 (2003)CrossRefGoogle Scholar
  10. 10.
    Wu, X.J., Shen, S.L.: Chaos in the fractional-order Lorenz system. Int. J. Comput. Math. 86(7), 1274–1282 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Munmuangsaen, B., Srisuchinwong, B.: A hidden chaotic attractor in the classical Lorenz system. Chaos Solitons Fractals 107, 61–66 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2), 443–450 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, W., Zhou, S., Li, H., Zhu, H.: Chaos in a fractional-order Rössler system. Chaos Solitons Fractals 42(3), 1684–1691 (2009)CrossRefGoogle Scholar
  14. 14.
    Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media (2011)Google Scholar
  16. 16.
    Petráš, I.: A note on the fractional-order Volta’s system. Commun. Nonlinear Sci. Numer. Simul. 15(2), 384–393 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Petráš, I.: A note on the fractional-order Chua’s system. Chaos Solitons Fractals 38(1), 140–147 (2008)CrossRefGoogle Scholar
  18. 18.
    Petráš, I.: Stability of fractional order systems with rational orders: a survey. Fract. Calc. Appl. Anal. 12(3), 269–298 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Campbell, S.L., Chancelier, J.P., Nikoukhah, R.: Modeling and Simulation in SCILAB. Springer, New York (2006)Google Scholar
  20. 20.
    Bunks, C., Chancelier, J.P., Delebecque, F., Goursat, M., Nikoukhah, R., Steer, S.: Engineering and Scientific Computing with Scilab. Springer Science & Business Media (2012)Google Scholar
  21. 21.
    Sharma, N., Gobbert, M.K.: A Comparative Evaluation of Matlab, FreeMat, and Scilab for Research and Teaching. UMBC Faculty Collection, Octave (2010)Google Scholar
  22. 22.
    Bordeianu, C.C., Besliu, C., Jipa, A., Felea, D., Grossu, I.V.: Scilab software package for the study of dynamical systems. Comput. Phys. Commun. 178(10), 788–793 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kishore Bingi
    • 1
    Email author
  • Rosdiazli Ibrahim
    • 2
  • Mohd Noh Karsiti
    • 2
  • Sabo Miya Hassan
    • 3
  • Vivekananda Rajah Harindran
    • 4
  1. 1.Institute of Autonomous SystemsUniversiti Teknologi PETRONASPerakMalaysia
  2. 2.Department of Electrical and Electronic EngineeringUniversiti Teknologi PETRONASPerakMalaysia
  3. 3.Department of Electrical and Electronics EngineeringAbubakar Tafawa Balewa UniversityBauchiNigeria
  4. 4.Instrumentation and ControlPETRONAS Group Technical SolutionsPetaling JayaMalaysia

Personalised recommendations