Advertisement

Approximation Techniques

  • Kishore BingiEmail author
  • Rosdiazli Ibrahim
  • Mohd Noh Karsiti
  • Sabo Miya Hassan
  • Vivekananda Rajah Harindran
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 264)

Abstract

This chapter will focus on practical realization or equivalent circuit implementation of the fractional-order systems and controllers in a finite-dimensional integer-order system. Hence, for achieving the approximated integer-order transfer function of the fractional-order system or controller, a novel curve fitting based approximation techniques for fractional-order differentiator or integrator are developed. The advantage of the techniques is that they are simple, easy to implement and can fit around the desired frequency range. The chapter also provides the MATLAB commands for implementing the developed algorithms. The simulation results in the frequency domain show that the proposed approach produced better parameter approximation for the desired frequency range as compared to Oustaloup, refined Oustaloup, and Matsuda techniques. Furthermore, time domain and stability analysis also validate the frequency domain results.

References

  1. 1.
    Krishna, B.T.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Li, Z., Liu, L., Dehghan, S., Chen, Y., Xue, D.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control 90(6), 1165–1181 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Djouambi, A., Charef, A., BesançOn, A.: Optimal approximation, simulation and analog realization of the fundamental fractional-order transfer function. Int. J. Appl. Math. Comput. Sci. 17(4), 455–462 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deniz, F.N., Alagoz, B.B., Tan, N., Atherton, D.P.: An integer order approximation method based on stability boundary locus for fractional-order derivative/integrator operators. ISA Trans. 62, 154–163 (2016)CrossRefGoogle Scholar
  6. 6.
    Merrikh-Bayat, F.: Rules for selecting the parameters of Oustaloup recursive approximation for the simulation of linear feedback systems containing PI\(^\lambda \)D\(^\mu \) controller. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1852–1861 (2012)Google Scholar
  7. 7.
    Valério, D., Da Costa, J.S.: Ninteger: a non-integer control toolbox for MatLab. In: Proceedings of Fractional Differentiation and Its Applications, Bordeaux, July 2004Google Scholar
  8. 8.
    Tepljakov, A., Petlenkov, E., Belikov, J.: Application of Newton’s method to analog and digital realization of fractional-order controllers. Int. J. Microelectron. Comput. Sci. 3(2), 45–52 (2012)Google Scholar
  9. 9.
    Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222(8), 1827–1846 (2013)CrossRefGoogle Scholar
  10. 10.
    Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer Science & Business Media (2011)Google Scholar
  11. 11.
    Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific (2010)Google Scholar
  12. 12.
    Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer Science & Business Media (2010)Google Scholar
  13. 13.
    Xue, D., Zhao, C., Chen, Y.: A modified approximation method of fractional order system. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, Henan, China, 25–28 June 2006Google Scholar
  14. 14.
    Das, S.: Functional Fractional Calculus. Springer Science & Business Media (2011)Google Scholar
  15. 15.
    Du, B., Wei, Y., Liang, S., Wang, Y.: Rational approximation of fractional order systems by vector fitting method. Int. J. Control Autom. Syst. 15(1), 186–195 (2017)CrossRefGoogle Scholar
  16. 16.
    Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I-Fundam. Theor. Appl. 47(1), 25–39 (2000)Google Scholar
  17. 17.
    Meng, L., Xue, D.: A new approximation algorithm of fractional order system models based optimization. J. Dyn. Syst. Meas. Control 134(4), 044504 (2012)Google Scholar
  18. 18.
    Wei, Y., Gao, Q., Peng, C., Wang, Y.: A rational approximate method to fractional order systems. Int. J. Control Autom. Syst. 12(6), 1180–1186 (2014)CrossRefGoogle Scholar
  19. 19.
    Krajewski, W., Viaro, U.: A method for the integer-order approximation of fractional-order systems. J. Frankl. Inst.-Eng. Appl. Math. 351(1), 555–564 (2014)CrossRefGoogle Scholar
  20. 20.
    Atherton, D.P., Tan, N., Yüce, A.: Methods for computing the time response of fractional-order systems. IET Control Theory Appl. 9(6), 817–830 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liang, S., Peng, C., Liao, Z., Wang, Y.: State space approximation for general fractional order dynamic systems. Int. J. Syst. Sci. 45(10), 2203–2212 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. Springer Science & Business Media (2011)Google Scholar
  23. 23.
    Yüce, A., Deniz, F.N., Tan, N.: A new integer order approximation table for fractional order derivative operators. IFAC-PapersOnLine 50(1), 9736–9741 (2017)CrossRefGoogle Scholar
  24. 24.
    Mitkowski, W., Oprzędkiewicz, K.: An estimation of accuracy of Charef approximation. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-integer Order Systems: 7th Conference on Non-integer Order Calculus and Its Applications. Lecture Notes in Electrical Engineering, vol. 357, pp. 71–80. Springer (2016)Google Scholar
  25. 25.
    Oprzędkiewicz, K.: Approximation method for a fractional order transfer function with zero and pole. Arch. Control Sci. 24(4), 447–463 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Khanra, M., Pal, J., Biswas, K.: Rational approximation and analog realization of fractional order transfer function with multiple fractional powered terms. Asian J. Control 15(3), 723–735 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Poinot, T., Trigeassou, J.C.: A method for modelling and simulation of fractional systems. Signal Process. 83(11), 2319–2333 (2003)CrossRefGoogle Scholar
  28. 28.
    Krajewski, W., Viaro, U.: On the rational approximation of fractional order systems. In: 2011 16th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 22–25 Aug 2011Google Scholar
  29. 29.
    Shi, G.: On the nonconvergence of the vector fitting algorithm. IEEE Trans. Circuits Syst. II-Express Briefs 63(8), 718–722 (2016)CrossRefGoogle Scholar
  30. 30.
    Ozdemir, A.A., Gumussoy, S.: Transfer function estimation in system identification toolbox via vector fitting. IFAC-PapersOnLine 50(1), 6232–6237 (2017)CrossRefGoogle Scholar
  31. 31.
    Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Harindran, V.R.: Frequency response based curve fitting approximation of fractional-order PID controllers. Int. J. Appl. Math. Comput. Sci. 29(2), 311–326 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kishore Bingi
    • 1
    Email author
  • Rosdiazli Ibrahim
    • 2
  • Mohd Noh Karsiti
    • 2
  • Sabo Miya Hassan
    • 3
  • Vivekananda Rajah Harindran
    • 4
  1. 1.Institute of Autonomous SystemsUniversiti Teknologi PETRONASPerakMalaysia
  2. 2.Department of Electrical and Electronic EngineeringUniversiti Teknologi PETRONASPerakMalaysia
  3. 3.Department of Electrical and Electronics EngineeringAbubakar Tafawa Balewa UniversityBauchiNigeria
  4. 4.Instrumentation and ControlPETRONAS Group Technical SolutionsPetaling JayaMalaysia

Personalised recommendations